

M. MAQSOOD ALI

BOOK - 2

Chapter 11

INITIAL AND TERMINAL POINTS OF A VECTOR

If $\mathrm{A}\left(a_{1}, b_{1}, c_{1}\right)$ and $\mathrm{B}\left(a_{2}, b_{2}, c_{2}\right)$ are initial and terminal points respectively, then vector $\overrightarrow{A B}$ is

$$
\begin{aligned}
\overrightarrow{A B} & =\left(a_{2}, b_{2}, c_{2}\right)-\left(a_{1}, b_{1}, c_{1}\right) \\
& =\left(a_{2}-a_{1}, b_{2}-b_{1}, c_{2}-c_{1}\right) \\
& =\left(a_{2}-a_{1}\right) i+\left(b_{2}-b_{1}\right) j+\left(c_{2}-c_{1}\right) k
\end{aligned}
$$

MCQ- 1:

If $P(3,-5,8)$ and $Q=(-6,2,7)$ are the points, then $\overrightarrow{P Q}=$?
(a) $-9 i+7 j-k$
(b) $3 i-3 j+15 k$
(c) $-3 i+3 j-15 k$
(d) $9 i-7 j+k$

Solution:

$$
\begin{aligned}
\overrightarrow{P Q} & =(-6,2,7)-(3,-5,8) \\
& =(-6-3,2+5,7-8) \\
& =(-9,7,-1) \\
& =-9 i+7 j-k
\end{aligned}
$$

The answer is (a).
MCQ-2 :
If $P(6,-4,9)$ and Q are the points, what are the coordinates of Q if $\overrightarrow{P Q}=12 i-2 j+5 k$?
(a) $(-6,-2,4)$
(b) $(3,-8,12)$
(c) $(18,-6,14)$
(d) $(6,2,-4)$

Solution:

$$
\overrightarrow{P Q}=(\text { coordinates of } Q)-(\text { coordinates of } P)
$$

$$
(\text { coordinates of } Q)=(\text { coordinates of } P)+\overrightarrow{P Q}
$$

$$
=(6,-4,9)+(12,-2,5)
$$

$$
\begin{aligned}
& Q(6+12,-4-2,9+5) \\
& Q(18,-6,14)
\end{aligned}
$$

The answer is (c).

MCQ-3 :

$x=?$, if $A(3,-5,2), B(-1, x,-4)$ and $\overrightarrow{A B}=-4 i+j-6 k)$?
(a) 6
(b) -4
(c) -6
(d) -5

Solution:

$$
\overrightarrow{A B}=B-A
$$

$$
\begin{aligned}
\overrightarrow{A B}=(-4,1,-6) & A(3,-5,2) \\
1 & =x-(-5) \\
1 & =x+5 \\
x & =1-5 \\
x & =-4
\end{aligned}
$$

The answer is (b).

(1) $\quad A(2,5,-3)$ and $\overrightarrow{A B}=6 i-2 j-3 k$. What are the coordinates of B ?
(a) $(4,-7,0)$
(b) $(8,3,-6)$
(c) $(8,3,-9)$
(d) $(4,3,-6)$
(2) $\overrightarrow{A B}=2 i+3 j-3 k$ and $B(5,2,4)$. What are the coordinates of A ?
(a) $(3,8,-2)$
(b) $(7,5,1)$
(c) $(-3,1,-7)$
(d) $(3,-1,7)$

MAGNITUDE OF A VECTOR

$$
\bar{r}=a i+b j+c k
$$

is a vector.
Magnitude of vector \bar{r} is

$$
r=|\bar{r}|=\sqrt{a^{2}+b^{2}+c^{2}}
$$

MCQ-4 :
$a=$?, if magnitude of the vector $\bar{r}=i+a j-2 k$ is 3 ?
(a) -5
(b) $\sqrt{12}$
(c) -2
(d) $\sqrt{3}$

Solution:

$$
\begin{aligned}
r & =\sqrt{1^{2}+a^{2}+(-2)^{2}} \\
3 & =\sqrt{1+a^{2}+4} \\
9 & =a^{2}+5 \\
a^{2} & =4 \\
a & = \pm 2
\end{aligned}
$$

The answer is (c).
MCQ-5 :
$\bar{a}=2 i+j$ and $\bar{b}=3 i-5 j$. What is the value of $|2 \bar{a}-\bar{b}|$?
(a) $\sqrt{12}$
(b) $\sqrt{42}$
(c) 6
(d) $\sqrt{38}$

Solution:

$$
\begin{aligned}
2 \bar{a}-\bar{b} & =(4 i+2 j)-(3 j-5 k) \\
& =4 i-j+5 k \\
|\overline{2 a}-\bar{b}| & =\sqrt{16+1+25} \\
& =\sqrt{42}
\end{aligned}
$$

The answer is (b).

UNIT VECTOR

$$
\hat{r}=\frac{\bar{r}}{|\bar{r}|}
$$

is a unit vector, in the direction of vector \bar{r} with magnitude 1.

MCQ- 6 :

What is the unit vector in the direction of the vector $\bar{r}=8 i+4 j-k$?
(a) $\frac{8}{7} i+\frac{4}{7} j-\frac{1}{7} k$
(b) $\frac{8}{9} i+\frac{4}{9} j-\frac{1}{9} k$
(c) $\frac{8}{5} i+\frac{4}{5} j-\frac{1}{5} k$
(d) $2 i+\frac{1}{2} j-\frac{1}{8} k$

Solution:

Divide the vector \bar{r} by 9

$$
\hat{r}=\frac{8}{9} i+\frac{4}{9} j-\frac{1}{9} k
$$

The answer is (b).

(1) What is the magnitude of vector $2 i-3 j+5 k$?
(a) $\sqrt{38}$
(b) $\sqrt{20}$
(c) $2 \sqrt{3}$
(d) $5 \sqrt{2}$
(2) What is the magnitude of the vector $3 i-4 j$?
(a) 1
(b) -1
(c) 5
(d) 25
(3) What is the unit vector of the vector $6 i-8 j$?
(a) $\frac{3}{2} i-j$
(b) $3 i-2 j$
(c) $\frac{3}{5} i-\frac{4}{5} j$
(d) $i-j$
(4) What is the vector in the direction of the vector $i+j$ of magnitude 3 ?
(a) $\frac{3}{\sqrt{2}} i+\frac{3}{\sqrt{2}} j$
(b) $3 i+3 j$
(c) $\frac{3}{2} i+\frac{3}{2} j$
(d) $\frac{1}{3} i+\frac{1}{3} j$
(5) What is the vector in the direction of the vector $4 i-3 j$ of magnitude 2 ?
(a) $2 i-\frac{3}{2} j$
(b) $\frac{4}{5} i-\frac{3}{5} j$
(c) $8 i-6 j$
(d) $\frac{8}{5} i-\frac{6}{5} j$

POSITION VECTOR

If O be the origin and $P(a, b, c)$ a point, then $\overrightarrow{O P}$ is called position vector.

$$
\begin{aligned}
\overrightarrow{O P} & =(a, b, c)-(0,0,0) \\
& =(a-0, b-0, c-0) \\
& =(a, b, c) \\
& =a i+b j+c k
\end{aligned}
$$

MCQ- 7:
$x=?$, if $\overrightarrow{O P}=5 i+3 j-x k$ is the position vector of $P(5,3,-8)$?
(a) 0
(b) 6
(c) -8
(d) 8

Solution:

The answer is (d).
MCQ- 8:
$3 \overrightarrow{P Q}=$? If the position vector of P and Q are $2 i-3 j+6 k$ and $-6 i+3 j-k$ respectively.
(a) $-24 i+18 j-21 k$
(b) $-12 i+15 k$
(c) $-4 i+5 k$
(d) $6 i-9 j+12 k$

Solution:

$$
\begin{aligned}
3 \overrightarrow{P Q} & =3(\overrightarrow{O Q}-\overrightarrow{O P}) \\
& =3\{(-6 i+3 j-k)-(2 i-3 j+6 k)\}
\end{aligned}
$$

$$
\begin{aligned}
3 \overrightarrow{P Q} & =3(-8 i+6 j-7 k) \\
& =-24 i+18 j-21 k
\end{aligned}
$$

The answer is (a).

(1) The position vector of A is $\overrightarrow{O A}=6 i+3 j-8 k$ and $\overrightarrow{A B}=10 i+8 j+2 k$. What is the position vector of B ?
(a) $16 i+11 j-10 k$
(b) $16 i+11 j-6 k$
(c) $4 i+5 j+10 k$
(d) $4 i+5 j-6 k$
(2) The position vector of B is $\overrightarrow{O B}=8 i+2 j-5 k$.and $\overrightarrow{A B}=12 i+4 j-3 k$.

What is the position vector of A ?
(a) $-4 i-2 j-2 k$
(b) $20 i+6 j-8 k$
(c) $-4 i-2 j-8 k$
(d) $20 i+6 j-2 k$

PARALLEL VECTORS

Two vectors \bar{a} and \bar{b} are parallel, if

$$
\bar{a}=m \bar{b}
$$

where m is a scalar (real number).

MCQ-9:

Which vector is parallel to the vector $2 i-6 j-10 k$?
(a) $2 i+6 j+10 k$
(b) $-i+3 j+5 k$
(c) $i-2 j-5 k$
(d) $-3 i+18 j+20 k$

Solution:

$$
\begin{aligned}
& -2\{\text { option }(b)\} \\
= & -2(-i+3 j+5 k) \\
= & 2 i-6 j-10 k
\end{aligned}
$$

The answer is (b).

(1) $\bar{a}=4 i+5 j$ is parallel to $\bar{b}=8 i+m j$. What is the value of m ?
(a) 10
(b) $\frac{1}{2}$
(c) $\frac{3}{2}$
(d) 20
(2) $\bar{p}=-2 i+m j$ and $\bar{q}=8 i+12 j$ are parallel vectors. What is the value of m ?
(a) $-\frac{1}{4}$
(b) -3
(c) 6
(d) $\frac{4}{3}$

DIRECTION COSINES

$(\cos \alpha, \cos \beta, \cos \gamma)$ are the directions cosine of a vector \bar{r},
where α, β and γ are angle between the vector \bar{r} and positive x, y and z axis respectively.
If $\bar{r}=x i+y j+z k$, then

$$
\begin{aligned}
x & =r \cos \alpha, \quad y=r \cos \beta, \quad z=r \cos \gamma \\
\cos \alpha & =\frac{x}{r}, \quad \cos \beta=\frac{y}{r}, \quad \cos \gamma=\frac{z}{r}
\end{aligned}
$$

where $r=|\bar{r}|$

Note:

The components of a unit vector of a vector are directions cosine of the vector.
Since $(\cos \alpha, \cos \beta, \cos \gamma)=\left(\frac{x}{r}, \frac{y}{r}, \frac{z}{r}\right)$

MCQ-10 :

What are the directions cosine of the vector $\bar{r}=3 i-4 k$?
(a) $(3 / 5,0,4 / 5)$
(b) $(5 / 3,0,4 / 5)$
(c) $(2 / 5,4 / 5,7 / 5)$
(d) $(7 / 5,3 / 5,4 / 5)$

Solution:

(3/5, 0, 4/5)
The answer is (a).

MCQ- 11: What is the angle between the y-axis and the vector $3 i+2 j-k$?
(a) $\cos ^{-1} \frac{2}{\sqrt{7}}$
(b) $\cos ^{-1} \sqrt{\frac{2}{7}}$
(c) $\cos ^{-1} \frac{2}{\sqrt{3}}$
(d) $\cos ^{-1} \sqrt{\frac{2}{5}}$

Solution:

$$
\cos \beta=\frac{y}{r}
$$

$$
\begin{aligned}
& =\frac{2}{\sqrt{14}} \\
& =\sqrt{\frac{2}{7}} \\
\beta & =\cos ^{-1} \sqrt{\frac{2}{7}}
\end{aligned}
$$

The answer is (b).

(1) What is the angle of the vector $\bar{r}=3 i+4 k$ from $z-$ axis?
(a) $\cos ^{-1} 1$
(b) $\cos ^{-1} \frac{3}{5}$
(c) $\cos ^{-1} \frac{4}{5}$
(d) $\cos ^{-1} 0$
(2) What is the angle of the vector $\bar{r}=8 i-6 k$ from y-axis?
(a) $\cos ^{-1} \frac{8}{10}$
(b) $\cos ^{-1}\left(\frac{-6}{10}\right)$
(c) $\cos ^{-1} 0$
(d) $\cos ^{-1} 1$

POSITION VECTORS AND RATIO

are the position vectors of points A, B and C respectively.
If C divides in the ratio , then

MCQ-12 :
? , if
and C divides

In the ratio 2:3.
(a) -
(b)
(c)
$-\quad(d)$

Solution:

The answer is (d).

(1)

$$
\text { and } \quad-\quad \text { What is the vector }
$$

(a) -
(b) -
(c) -
(d) -
(2)
and C divides in the ratio 2:3. What is the vector

(a)
(b) -
(c) -
(d) -
(3)

(a)
(b) -
(c) -
(d) -

DOT PRODUCT

$$
\begin{aligned}
& \bar{u}=a_{1} i+b_{1} j+c_{1} k \quad \text { and } \\
& \bar{v}=a_{2} i+b_{2} j+c_{2} k
\end{aligned}
$$

The dot product of \bar{u} and \bar{v} is

$$
\bar{u} \cdot \bar{v}=a_{1} b_{2}+b_{1} b_{2}+c_{1} c_{2}
$$

VALUE OF $\operatorname{COS} \theta$:
If θ is the angle between the vectors \bar{u} and \bar{v} then

$$
\cos \theta=\frac{\bar{u} \cdot \bar{v}}{|\bar{u}||\bar{v}|}
$$

MCQ- 13 :
$a=$?, if $\bar{u}=2 i-3 j+5 k, \bar{v}=3 i+a j-k$ and $\bar{u} . \bar{v}=-29$
(a) 4
(b) 10
(c) 8
(d) 6

Solution:

$$
\begin{aligned}
\bar{u} \cdot \bar{v} & =(2 \times 3)+(-3 \times a)+(-1 \times 5) \\
-29 & =6-3 a-5 \\
-3 a & =-30 \\
a & =10
\end{aligned}
$$

The answer is (b).
MCQ- 14: $\cos \theta=$?, if $\bar{a}=2 i-j+3 k$ and $\bar{b}=i+3 j-2 k$.
(a) $-\frac{1}{2}$
(b) $1 / \sqrt{2}$
(c) $-7 / 8$
(d) $-7 / \sqrt{14}$

Solution:

$$
\begin{gathered}
\bar{a} \cdot \bar{b}=2-3-6 \\
=-7 \\
a=\sqrt{4+1+9}=\sqrt{14} \\
b=\sqrt{1+9+4}=\sqrt{14} \\
\quad \cos \theta=\frac{\bar{a} \cdot \bar{b}}{a b}=\frac{-7}{14}=-\frac{1}{2}
\end{gathered}
$$

The answer is (a).

ORTHOGONAL VECTORS

Two vectors \bar{u} and \bar{v} are orthogonal, if

$$
\bar{u} . \bar{v}=0
$$

MCQ-15 :

$\bar{u}=2 i+3 j-5 k$ and $\bar{v}=6 i-h j+3 k$ are orthogonal. What is the value of h ?
(a) -1
(b) 3
(c) -2
(d) 6

Solution:

$$
\begin{aligned}
& \bar{u} \text { and } \bar{v} \text { are orthogonal } \\
& \bar{u} \cdot \bar{v}=0 \\
&(2 i+3 j-5 k) \cdot(6 i-h j+3 k)=0 \\
& 12-3 h-15=0 \\
&-3 h=3 \\
& h=-1
\end{aligned}
$$

The answer is (a).

WORK DONE

A particle is displaced d by the force F, the work done is

$$
\text { Work done }=\bar{F} \cdot \bar{d}
$$

MCQ-16 :

A particle is displaced from $(2,3,8)$ to $(9,5,1)$ by the force $9 i+2 j-6 k$. What is the work done?
(a) 109
(b) 208
(c) 72
(d) 48

Solution:

$$
\begin{aligned}
\bar{d} & =(9,5,1)-(2,3,8) \\
& =7 i+2 j-7 k
\end{aligned}
$$

$$
\text { work done }=\bar{F} . \bar{d}
$$

$$
\begin{aligned}
& =(9 i+2 j-6 k) \cdot(7 i+2 j-7 k) \\
& =63+4+42 \\
& =109
\end{aligned}
$$

The answer is (a).

(1) If $\bar{a}=2 i-3 j+5 k$ and $\bar{b}=5 i+j$, Then $\bar{a} \cdot \bar{b}=$?
(a) 8
(b) -13
(c) $10 i-j$
(d) 7
(2) $\bar{a}=3 i-2 k$ and $\bar{b}=m i+5 j+9 k$ are orthogonal vectors. What is the value of m ?
(a) 6
(b) 2
(c) 8
(d) 3
(3) What is the work done if a particle is displaced from point $(2,8,5)$ to $(9,3,7)$ by the force $2 i-j+k$?
(a) 15
(b) 26
(c) 21
(d) 9
(4) The magnitude of a vector \bar{r} is $|\bar{r}|$. What is the value of $\bar{r} \cdot \bar{r}$?
(a) $\frac{\bar{r}}{|\bar{r}|}$
(b) $|\bar{r}|^{2}$
(c) \bar{r}^{2}
(d) $|\bar{r}| \bar{r}$
(5) If $\bar{r} \cdot \bar{r}=m^{2}+1$ and $|\bar{r}|=5$. What is the positive value of m ?
(a) 3
(b) $3 \sqrt{2}$
(c) 2
(d) $2 \sqrt{6}$
(6) $\bar{r} \cdot \bar{r}=9$ and $|\bar{r}|=m$. What is the positive value of m ?
(a) $3 \sqrt{3}$
(b) 3
(c) 81
(d) 9

CROSS PRODUCT

and =

The cross product of and is
\times

Shortcut:

$$
\begin{aligned}
x= & (\text { coeff. of } x \text { coeff. of }- \text { coeff. of } \quad x \text { coeff. of }) \\
& (\text { coeff. of } x \text { coeff. of }- \text { coeff. of } x \text { coeff. of }) \\
& (\text { coeff. of } \quad x \text { coeff. of }- \text { coeff. of } x \text { coeff. of })
\end{aligned}
$$

CLOCKWISE AND ANTICLOCKWISE DIRECTIONS:

are unit vectors in the directions of x, y and z-axis respectively.

Clockwise Direction $\mathbf{j} \times \mathbf{i}=-\mathbf{k}, \mathbf{k} \times \mathbf{j}=-\mathbf{i}, \mathbf{i} \times \mathbf{k}=-\mathbf{j}$	Anticlockwise Direction $\mathbf{i} \times \mathbf{j}=\mathbf{k} \quad, \quad \mathbf{j} \times \mathbf{k}=\mathbf{i} \quad, \quad \mathbf{k} \times \mathbf{i}=\mathbf{j}$

MCQ-17 :

if
(a)
(c)
)
Solution:

$$
\begin{aligned}
\bar{a} \times \bar{b} & =i(-12-12)-j(-18+20)+k(-9-10) \\
& =-24 i-2 j-19 k
\end{aligned}
$$

The answer is (c).
MCQ-18 :
$\bar{a} \times \bar{b}=$?, if $\bar{a}=5 i+2 j-4 k$ and $\bar{b}=6 i-3 j+7 k ?$
(a) $2 i+8 j-12 k$
(b) $2 i-59 j-27 k$
(c) $6 i+12 j-35 k$
(d) None

Solution:

$$
\begin{aligned}
& \bar{a}=5 \mathrm{i}+2 \mathrm{j}-4 \mathrm{k} \\
& \bar{b}=6 \mathrm{i}-3 \mathrm{j}+7 \mathrm{k}
\end{aligned}
$$

Note: Due to the option (d) None, find $\overline{\mathrm{a}} \times \bar{b}$ completely.

$$
\begin{aligned}
\bar{a} \times \bar{b} & =i(14-12)-j(35+24)+k(-15-12) \\
& =2 i-59 j-27 k
\end{aligned}
$$

The answer is (b).
MCQ-19 :
$|\overline{\mathrm{a}} \times \bar{b}|=?, \quad \overline{\mathrm{a}}=2 i-j+k, \quad \bar{b}=i+2 j-k$
(a) $\sqrt{47}$
(b) $\sqrt{12}$
(c) $\sqrt{26}$
(d) $\sqrt{35}$

Solution:

$$
\begin{aligned}
& \bar{a}=2 i-j+k \\
& \bar{b}=i+2 j-k
\end{aligned}
$$

$\bar{a} \times \bar{b}=i(1-2)-j(-2-1)+k(4+1)$

$$
=-i+3 j+5 k
$$

$$
|\bar{a} \times \bar{b}|=\sqrt{1+9+25}
$$

$$
=\sqrt{35}
$$

The answer is (d).

MCQ-20 :

$\bar{a} \times \bar{b}=$? , $\bar{a}=i-2 j+5 k, \bar{b}=3 i+4 j-2 k$.
(a) $-16 i+17 j+10 k$
(b) $-16 i-5 j+10 k$
(c) $-16 i+8 j+10 k$
(d) $-16 i-12 j+10 k$

Solution:

$$
\begin{gathered}
\bar{a}=i-2 j+5 k \\
\bar{b}=3 i+4 j-2 k
\end{gathered}
$$

Note: First and last term in each options are same, so check only second term.

$$
\begin{aligned}
& =-j\{1 \times(-2)-3 \times 5\} \\
& =-j(-2-15) \\
& =17 j
\end{aligned}
$$

The answer is (a).
MCQ-21 :
$\bar{a} \times \bar{b}=?, \bar{a}=3 i-2 j+4 k, \bar{b}=6 i-5 j+7 k$.
(a) $3 i-2 j+8 k$
(b) $4 i+6 j-7 k$
(c) $6 i+3 j-3 k$
(d) $9 i-10 j+12 k$

Solution:

$$
\begin{aligned}
& \bar{a}=3 i-2 j+4 k \\
& \bar{b}=6 i-5 j+7 k
\end{aligned}
$$

Note: Four options have different answers, so check any one term.

$$
\begin{aligned}
& =i(-14+20) \\
& =6 i
\end{aligned}
$$

The answer is (c).

PERPENDICULAR VECTOR

$$
\bar{u} \times \bar{v}
$$

is a vector perpendicular to both the vectors \bar{u} and \bar{v}.

UNIT PERPENDICULAR VECTOR

$$
\frac{\bar{u} \times \bar{v}}{|\bar{u} \times \bar{v}|}
$$

is a unit vector perpendicular to both the vectors \bar{u} and \bar{v}. MCQ- 22:
$\bar{u}=3 i-2 j+4 k$ and $\bar{v}=5 i+3 j-k$ are two vectors. What is the vector perpendicular to both the vectors \bar{u} and \bar{v} ?
(a) $2 i+5 j-5 k$
(b) $15 i-6 j-4 k$
(c) $-10 i+23 j+29 k$
(d) None

Solution:

The answer is (d).

(1) If $\bar{a}=2 i+3 k$ and $\bar{b}=5 j$, then $\bar{a} \times \bar{b}=$?
(a) 0
(b) $-15 i+10 k$
(c) $2 i+5 j+3 k$
(d) $10 i+15 k$
(2) $\bar{a}=6 i$ and $\bar{b}=2 k$. What is the vector perpendicular to both \bar{a} and $\bar{b}=$?
(a) $-12 j$
(b) $12 j$
(c) 0
(d) $3 j$

TRIPLE PRODUCT

are three vectors.
The triple product of the vectors
is defined as
where

ACCORDING TO THE PROPERTIES OF DETERMINANT:

(i)

Similarly

So that the value of is equal to zero if
(ii) Interchange two vectors:
(iii) Taking common a scalar from a column:
(iv)

VOLUME OF PARALLELOPIPED:

Volume of Parallelopiped

룰졸룽TTTㄹㄹ=9

(1) $i . j \times k=$?
(a) 1
(b) 0
(c) i^{2}
(d) j
(2) $k . j \times i=$?
(a) -1
(b) 1
(c) 0
(d) k^{2}
(3) $i \times k . j=$?
(a) 1
(b) 0
(c) -1
(d) j^{2}
(4) $\bar{a} \cdot \bar{b} \times \bar{a}=$?
(a) 1
(b) $a^{2} b$
(c) $a^{2} \times b$
(d) 0
(5) What is the volume of parallelepiped whose three adjacent adges are represented by the vectors $\bar{a}, \bar{b}, 2 \bar{a}$?
(a) $a b c$
(b) 1
(c) 2
(d) 0
(6) What is the volume of parallelepiped whose three adjacent adges are represented by the vectors $3 i, 2 j, k$?
(a) 6
(b) 1
(c) 0
(d) $\frac{3}{2}$

尽UTriricir
 ME MEAQSTOOD ATI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON MATHEMATICS

BY

M. MAQSOOD ALI

FROM WEBSITE
www.mathbunch.com

