www.mathbunch.com

M. MAQSOOD ALI

Chapter 11

VECTORS

INITIAL AND TERMINAL POINTS OF A VECTOR

If A (a_1, b_1, c_1) and B (a_2, b_2, c_2) are initial and terminal points respectively , then vector \overrightarrow{AB} is

$$\overline{AB} = (a_2, b_2, c_2) - (a_1, b_1, c_1)$$

= $(a_2 - a_1, b_2 - b_1, c_2 - c_1)$
= $(a_2 - a_1)i + (b_2 - b_1)j + (c_2 - c_1)k$

MCQ-1:

If P(3, -5, 8) and Q = (-6, 2, 7) are the points, then $\overrightarrow{PQ} = ?$ (b) 3i - 3j + 15k(a) -9i + 7j - k9i - 7j + k

(c)
$$-3i + 3j - 15k$$
 (d)

Solution:

$$\overrightarrow{PQ} = (-6, 2, 7) - (3, -5, 8)$$
$$= (-6 - 3, 2 + 5, 7 - 8)$$
$$= (-9, 7, -1)$$

9i + 7j - k

The answer is (a).

MCQ-2:

If P(6, -4, 9) and Q are the points, what are the coordinates of Q if

$$\overrightarrow{PQ} = 12i - 2j + 5k?$$
(a) (-6, -2, 4)
(b) (3, -8, 12)
(c) (18, -6, 14)
(d) (6, 2, -4)

Solution:

 \overrightarrow{PQ} = (coordinates of Q) – (coordinates of P) (coordinates of Q) = (coordinates of P) + \overrightarrow{PQ}

= (6, -4, 9) + (12, -2, 5)

MAGNITUDE OF A VECTOR

 $\bar{r} = ai + bj + ck$

is a vector.

Magnitude of vector \overline{r} is

$$r = |\bar{r}| = \sqrt{a^2 + b^2 + c^2}$$

MCQ-4:

The answer is (b).

UNIT VECTOR

 $\hat{r} = \frac{\bar{r}}{|\bar{r}|}$

is a unit vector , in the direction of vector $ar{r}$ with magnitude 1.

MCQ- 6:

What is the unit vector in the direction of the vector $\bar{r} = 8i + 4j - k$?

(a)
$$\frac{8}{7}i + \frac{4}{7}j - \frac{1}{7}k$$

(b) $\frac{8}{9}i + \frac{4}{9}j - \frac{1}{9}k$
(c) $\frac{8}{5}i + \frac{4}{5}j - \frac{1}{5}k$
(d) $2i + \frac{1}{2}j - \frac{1}{8}k$
tion:

Solu

Divide the vector \bar{r} by 9

$$\hat{r} = \frac{8}{9}i + \frac{4}{9}j - \frac{1}{9}k$$

 $r = \sqrt{64 + 16 + 1}$

=9

 $\bar{r} = 8i + 4j - k$

 $r = |\bar{r}| = \sqrt{x^2 + y^2 + z^2}$

The answer is (b).

BXBRCISE-2							
(1)	What is the magnitude of vector $2i - 3j + 5k$?						
	(a) $\sqrt{38}$	(b) $\sqrt{20}$	(c) 2√3	(d) 5√2			
(2)	What is the magnitude of the vector $3i - 4j$?						
	(a) 1	(b) -1	(c) 5	(d) 25			
(3)	What is the unit ve	ctor of the vector	6i — 8j ?				
	(a) $\frac{3}{2}i - j$	(b) 3 <i>i</i> – 2 <i>j</i>	(c) $\frac{3}{5}i - \frac{4}{5}j$	(d) <i>i – j</i>			
(4)	What is the vector in the direction of the vector $i + j$ of magnitude 3?						
	(a) $\frac{3}{\sqrt{2}}i + \frac{3}{\sqrt{2}}j$	(b) 3 <i>i</i> + 3 <i>j</i>	(c) $\frac{3}{2}i + \frac{3}{2}j$	(d) $\frac{1}{3}i + \frac{1}{3}j$			
(5)	What is the vector in the direction of the vector $4i - 3j$ of magnitude 2 ?						
	(a) $2i - \frac{3}{2}j$	(b) $\frac{4}{5}i - \frac{3}{5}j$	(c) 8i – 6j	(d) $\frac{8}{5}i - \frac{6}{5}j$			
¢							

POSITION VECTOR

If *O* be the origin and P(a, b, c) a point, then \overrightarrow{OP} is called position vector. $\overrightarrow{OP} = (a, b, c) - (0, 0, 0)$ = (a - 0, b - 0, c - 0)= (a, b, c)= ai + bj + ckMCQ- 7: x = ?, if $\overrightarrow{OP} = 5i + 3j - xk$ is the position vector of P (5, 3, -8)? (b) 6 (c) −8 (a) 0 (d) 8 **Solution:** P (5,3,-8) $\overrightarrow{OP} = 5i + 3j - xk$ -x = -8 { $\vec{OP} = 5i + 3j - 8k$ x = 8The answer is (d). MCQ- 8: $3 \overrightarrow{PQ} = ?$ If the position vector of P and Q are 2i - 3j + 6k and -6i + 3j - krespectively. (a) -24i + 18i - 21k(b) -12i + 15k(c) -4i + 5k(d) 6i - 9j + 12kSolution: $3 \overrightarrow{PQ} = 3(\overrightarrow{OQ} - \overrightarrow{OP})$ $= 3 \{ (-6i + 3j - k) - (2i - 3j + 6k) \}$ $3 \overrightarrow{PQ} = 3(-8i + 6j - 7k)$ = -24i + 18i - 21kThe answer is (a).

EXERCISE-3 (1) The position vector of A is $\overrightarrow{OA} = 6i + 3j - 8k$ and $\overrightarrow{AB} = 10i + 8j + 2k$. What is the position vector of *B*? (a) 16i + 11j - 10k(b) 16i + 11j - 6k(d) 4i + 5j - 6k(c) 4i + 5j + 10k(2) The position vector of B is $\overrightarrow{OB} = 8i + 2j - 5k$.and $\overrightarrow{AB} = 12i + 4j - 3k$. What is the position vector of *A*? (a) -4i - 2j - 2k(b) 20i + 6j - 8k(d) 20i + 6j - 2k(c) -4i - 2j - 8kPARALLEL VECTORS Two vectors \overline{a} and \overline{b} are parallel, if $\overline{a} = m b$ where *m* is a scalar (real number). **MCQ-9**: Which vector is parallel to the vector 2i - 6j - 10k? (b) -i + 3j + 5k(a) 2i + 6j + 10k(c) i - 2j - 5k(d) -3i + 18j + 20kSolution: -2 { option (*b*)} = -2(-i + 3j + 5k)= 2i - 6j - 10kThe answer is (b). EXERCISE-4 (1) $\bar{a} = 4i + 5j$ is parallel to $\bar{b} = 8i + mj$. What is the value of m? (c) $\frac{3}{2}$ (b) $\frac{1}{2}$ (a) 10 (d) 20 (2) $\bar{p} = -2i + mj$ and $\bar{q} = 8i + 12j$ are parallel vectors. What is the value of m? (a) $-\frac{1}{4}$ (d) $\frac{4}{3}$ (b) −3 (c) 6

DIRECTION COSINES

 $(\cos\alpha, \cos\beta, \cos\gamma)$ are the directions cosine of a vector \bar{r} ,

where α , β and γ are angle between the vector \bar{r} and positive x , y and z axis respectively.

If $\bar{r} = xi + yj + zk$, then

$$x = r\cos \alpha, \quad y = r\cos \beta, \quad z = r\cos \alpha$$

 $\cos \alpha = \frac{x}{r}, \quad \cos \beta = \frac{y}{r}, \quad \cos \gamma = \frac{z}{r}$

where $r = |\bar{r}|$

Note:

The components of a unit vector of a vector are directions cosine of the vector.

Since $(\cos\alpha, \cos\beta, \cos\gamma) = (\frac{x}{r}, \frac{y}{r}, \frac{z}{r})$

MCQ-10:

What are the directions cosine of the vector $\bar{r} = 3i - 4k$?

(a) (3/5,0,4/5) (b) (5/3,0,4/5) (c) (2/5, 4/5, 7/5)

(d) (7/5, 3/5, 4/5)

Solution:

$$\bar{r} = 3i - 4k$$

$$x = 3, y = 0, z = -4$$

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$r = \sqrt{9 + 16} = 5$$

$$\cos\alpha = \frac{x}{r}, \cos\beta = \frac{y}{r}, \cos\gamma = \frac{z}{r}$$

$$(3/5, 0, 4/5)$$

The answer is (a).

DOT PRODUCT

$$\bar{u} = a_1 i + b_1 j + c_1 k \quad \text{and}$$
$$\bar{v} = a_2 i + b_2 j + c_2 k$$

The dot product of \bar{u} and \bar{v} is

 $\bar{u}. \bar{v} = a_1 b_2 + b_1 b_2 + c_1 c_2$

VALUE OF $COS\theta$:

If heta is the angle between the vectors $ar{u}$ and $ar{v}$ then

$$\cos\theta = \frac{\overline{u}.\overline{v}}{|\overline{u}||\overline{v}|}$$

MCQ- 13:

a =?, if $\bar{u} = 2i - 3j + 5k$, $\bar{v} = 3i + aj - k$ and $\bar{u} \cdot \bar{v} = -29$ (a) 4 (b) 10 (c) 8 (d) 6

Solution:

$$\bar{u}.\bar{v} = (2 \times 3) + (-3 \times a) + (-1 \times 5)$$

-29 = 6 - 3a - 5
-3a = -30
a = 10

The answer is (b).

MCQ-14: $\cos\theta = ?$, if $\bar{a} = 2i - j + 3k$ and $\bar{b} = i + 3j - 2k$. (a) $-\frac{1}{2}$ (b) $\frac{1}{\sqrt{2}}$ (c) $\frac{-7}{8}$ (d) $\frac{-7}{\sqrt{14}}$

Solution:

$$\bar{a}.\bar{b} = 2 - 3 - 6$$

$$= -7$$

$$a = \sqrt{4 + 1 + 9} = \sqrt{14}$$

$$b = \sqrt{1 + 9 + 4} = \sqrt{14}$$

$$\cos\theta = \frac{\bar{a}.\bar{b}}{ab} = \frac{-7}{14} = -\frac{1}{2}$$

The answer is (a).

ORTHOGONAL VECTORS

Two vectors \bar{u} and \bar{v} are orthogonal, if

 \overline{u} . \overline{v} = 0

MCQ-15:

 $\bar{u} = 2i + 3j - 5k$ and $\bar{v} = 6i - hj + 3k$ are orthogonal. What is the value of h? (d) 6 (a) -1(b) 3 (c) −2 Solution:

$$\bar{a} \times \bar{b} = i(-12 - 12) - j(-18 + 20) + k(-9 - 10)$$

$$= -24i - 2j - 19k$$
The answer is (c).
MCQ-18 :

$$\bar{a} \times \bar{b} = ?, \text{ if } \bar{a} = 5i + 2j - 4k \text{ and } \bar{b} = 6i - 3j + 7k ?$$
(a) $2i + 8j - 12k$ (b) $2i - 59j - 27k$
(c) $6i + 12j - 35k$ (d) None
Solution:

$$\bar{a} = 5i + 2j - 4k$$

$$\bar{b} = 6i - 3j + 7k$$
Note: Due to the option (d) None, find $\bar{a} \times \bar{b}$ completely.
$$\bar{a} \times \bar{b} = i(14 - 12) - j(35 + 24) + k(-15 - 12)$$

$$= 2i - 59j - 27k$$
The answer is (b).
MCQ-19 :
 $|\bar{a} \times \bar{b}| = ?, \quad \bar{a} = 2i - j + k, \quad \bar{b} = i + 2j - k$
(a) $\sqrt{47}$ (b) $\sqrt{12}$ (c) $\sqrt{26}$ (d) $\sqrt{35}$
Solution:

$$\bar{a} \times \bar{b} = i(1 - 2) - j(-2 - 1) + k(4 + 1)$$

$$= -i + 3j + 5k$$
 $|\bar{a} \times \bar{b}| = \sqrt{1 + 9 + 25}$

$$= \sqrt{35}$$

The answer is (d).

The answer is (c).

PERPENDICULAR VECTOR

 $\bar{u} \times \bar{v}$

is a vector perpendicular to both the vectors \bar{u} and \bar{v} .

UNIT PERPENDICULAR VECTOR

ū	×	\bar{v}
Ū	×	$\overline{v} $

is a unit vector perpendicular to both the vectors \bar{u} and \bar{v} .

MCQ- 22:

 $\bar{u} = 3i - 2j + 4k$ and $\bar{v} = 5i + 3j - k$ are two vectors. What is the vector perpendicular to both the vectors \bar{u} and \bar{v} ?

TRIPLE PRODUCT

are three vectors.

The triple product of the vectors

is defined as

where

ACCORDING TO THE PROPERTIES OF DETERMINANT:

(i)

Similarly

So that the value of

is equal to zero if

(ii) Interchange two vectors:

(iii) Taking common a scalar from a column:

(iv)

VOLUME OF PARALLELOPIPED:

a

Volume of Parallelopiped

<u> BXBRCISE</u> -9								
(1)	$i.j \times k = ?$							
	(a) 1	(b) 0	(c) <i>i</i> ²	(d) <i>j</i>				
(2)	$k.j \times i = ?$							
	(a) —1	(b) 1	(c) 0	(d) k^2				
(3)	$i \times k.j = ?$							
	(a) 1	(b) 0	(c) -1	(d) j ²				
(4)	$\bar{a} \cdot \bar{b} \times \bar{a} = ?$							
	(a) 1	(b) a^2b	(c) $a^2 \times b$	(d) 0				
(5)	What is the volume	of parallelepiped w	hose three adjacer	nt adges are				
	represented by the	vectors \bar{a} , \bar{b} , $2\bar{a}$?	\sim					
	(a) <i>abc</i>	(b) 1	(c) 2	(d) 0				
(6)	What is the volume	of parallelepipe <mark>d</mark> w	hose three adjacer	nt adges are				
represented by the vectors $3i, 2j, k$?								
	(a) 6	(b) 1	(c) 0	(d) $\frac{3}{2}$				

AUTHOR

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD ALL BOOKS AND CD ON MATHEMATICS BY M. MAQSOOD ALI FROM WEBSITE WWW.mathbunch.com