

Chapter 10

TRANSVERSE AND CONJUGATE AXIS

HYPERBOLAS CENTRE AT ORIGIN

众U匠界OR

MT MTAQSTOOD 尽TI
ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON MATHEMATICS
BY
M．MAQSOOD ALI
FROM WEBSITE
www．mathbunch．com

MCQ- 2:

What are the equations of directrices of hyperbola $25 y^{2}-9 x^{2}=225$?
(a) $y= \pm \frac{9}{\sqrt{34}}$
(b) $x= \pm \frac{3}{34}$
(c) $y= \pm 5 / 3$
(d) $x= \pm^{8} / \sqrt{31}$

Solution:

The answer is (a).
MCQ- 3:
What is the length of latus rectum of hyperbola $36 x^{2}-25 y^{2}=225$?
(a) 12
(b) $24 / 7$
(c) 6
(d) $36 / 5$

Solution:

\quad| $a^{2}=\frac{225}{36}=\frac{25}{4} \quad, \quad b^{2}=\frac{225}{25}=9$ |
| :--- |
| $a=\frac{5}{2} \quad, \quad b=3$ |
| Length of latus rectum $=\frac{2 b^{2}}{a}$ |
| |
| $=\frac{2 \times 9}{5 / 2}$ |
| |
| $=\frac{36}{5}$ |

The answer is (d).

(1) What are the vertices of the hyperbola $2 y^{2}-9 x^{2}=18$.
(a) $(\pm \sqrt{2}, 0)$
(b) $(0, \pm \sqrt{2})$
(c) $(\pm 3,0)$
(d) $(0, \pm 3)$
(2) What are the foci of the hyperbola $9 x^{2}-16 y^{2}=144$?
(a) $(\pm 4,0)$
(b) $(\pm 3,0)$
(c) $(\pm 5,0)$
(d) $(0, \pm 2)$
(3) What are the equations of directrices of the hyperbola $5 y^{2}-25 x^{2}=150$?
(a) $y= \pm 4$
(b) $y= \pm 5$
(c) $x= \pm 4$
(d) $x= \pm 5$
(4) The centre of a hyperbola is at origin length of transverse axis lie on y-axis is 8 and eccentricity $\frac{3}{2}$. What are the foci?
(a) $(\pm 6,0)$
(b) $(0, \pm 6)$
(c) $(0, \pm 12)$
(d) $(0, \pm 24)$
(5) e is the eccentricity of the hyperbola $b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}$. What are the equations of directrices.
(a) $x= \pm \frac{e}{a}$
(b) $y= \pm \frac{a}{e}$
(c) $x= \pm \frac{a}{e}$
(d) $y= \pm \frac{e}{a}$
(6) e is the eccentricity of the hyperbola, which is true?
(a) $e=1$
(b) $e>1$
(c) $e<1$
(d) $e=0$
(7) Which is the possible value of eccentricity of the hyperbola?
(a) -1.5
(b) 0.5
(c) 2.5
(d) 1

EQUATION OF HYPERBOLA

MCQ- 4:
What is the equation of hyperbola centre at origin, vertices at $(0, \pm 4)$ and length of latus rectum is 6 ?
(a) $12 x^{2}-16 y^{2}=192$
(b) $12 y^{2}-16 x^{2}=192$
(c) $16 y^{2}-12 x^{2}=192$
(d) None

Solution:

The answer is (b).

(1) What is the equation of hyperbola centre at origin, vertices at $(\pm 3,0)$ and foci $(\pm 4,0)$?
(a) $7 x^{2}-9 y^{2}=63$
(b) $9 x^{2}-7 y^{2}=63$
(c) $9 x^{2}-16 y^{2}=144$
(d) $16 x^{2}-9 y^{2}=144$

HYPERBOLA CENTRE AT (h, k)

Comparison:

The comparison of equations of hyperbolas centre at origin and centre at (h, k) :

Centre at origin	Centre at (h,k)
Transverse axis is along x-axis: i) Equation of ellipse $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ or $b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}$ ii) Vertices at $(\pm a, 0)$ iii) Foci at ($\pm c, 0$)	Transverse axis is along x-axis: i) Equation of ellipse $\begin{gathered} \frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 \\ \text { or } \\ b^{2}(x-h)^{2}-a^{2}(y-k)^{2}=a^{2} b^{2} \end{gathered}$ ii) Vertices at $(\pm a+h, k)$ iii) Fociat $(\pm c+h, k)$
Transverse axis is along y-axis: i) Equation of ellipse $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$ or $b^{2} y^{2}-a^{2} x^{2}=a^{2} b^{2}$ ii) Vertices at $(0, \pm a)$ iii) Foci at $(0, \pm c)$	Transverse axis is along y-axis: i) Equation of ellipse $\begin{gathered} \frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1 \\ \text { or } \\ b^{2}(y-k)^{2}-a^{2}(x-h)^{2}=a^{2} b^{2} \end{gathered}$ ii) Vertices at $(h, \pm a+k)$ iii) Foci at $(h, \pm c+k)$

Formulae: (Same for both types of hyperbolas)

i) $c^{2}=a^{2}+b^{2}$
ii) $b^{2}=a^{2}\left(e^{2}-1\right)$
iii) $e=c / a$
iv) $c=a e$
v) Length of latus rectum $=\frac{2 b^{2}}{a}$
vi) Length of transverse axis $=2 a$
vii) Length of conjugate axis $=2 b$
viii) Semi transverse axis=a
ix) Semi conjugate axis $=b$
x) Distance between foci=2c
xi) Distance between directrices $=2\left(\frac{a^{2}}{c}\right)$

MCQ-5 :

What is the eccentricity of the hyperbola

$$
11 x^{2}-25 y^{2}-22 x-100 y-1978=0 ?
$$

a^{2} and b^{2} are not in fraction they are positive integers.
(a) $8 / 3$
(b) $6 / 5$
(c) $7 / 2$
(d) $11 / 8$

Solution:

$c^{2}=a^{2}+b^{2}$
$c^{2}=25+11$
$c^{2}=36$
$c=6$
$e=c / a$

$$
e=6 / 5
$$

The answer is (b).
MCQ- 6 :
What is the eccentricity of hyperbola

$$
7 x^{2}-9 y^{2}-28 x-18 y-44=0 ?
$$

(a) $9 / 11$
(b) $16 / 19$
(c) $5 / 7$
(d) $4 / 3$

Solution:

The four options are
(a) $\frac{9}{11}<1$
(b) $\frac{16}{19}<1$
(c) $\frac{5}{7}<1$
(d) $\frac{4}{3}>1$

Since the eccentricity of hyperbola is greater than 1, so
The answer is (d).

CONVERTING INTO STANDARD FORM

Note: \{Convert general equation into standard equation when it is not conform (or not given) that a^{2} and b^{2} are in fractions or positive integers.\}
Case-1: a^{2} and b^{2} are not in fraction, they are positive integers.
The Equation of Hyperbola is

$$
9 x^{2}-4 y^{2}-36 x-40 y-100=0 \rightarrow(1)
$$

Coeff. of $x^{2}\left(x+\frac{\text { coeff.of } x}{2 . \operatorname{coeff.of~} x^{2}}\right)^{2}-$ Coeff. of $y^{2}\left(y-\frac{\text { coeff.of } y}{2 . \operatorname{coeff.of~} y^{2}}\right)^{2}=$

$$
+100+\text { Coeff. of } x^{2}\left(\frac{\operatorname{coeff.of} x}{2 . \operatorname{coeff.of} x^{2}}\right)^{2}-\text { Coeff. of } y^{2}\left(\frac{\operatorname{coeff.of~} y}{2 . \operatorname{coeff.of} y^{2}}\right)^{2}
$$

First step: (For L.H.S) Incomplete equation

$$
9\left(x-\frac{36}{2 \times 9}\right)^{2}-4\left(y+\frac{40}{2 \times 4}\right)^{2}
$$

Second step:

$$
\begin{aligned}
9(x-2)^{2}-4(y+5)^{2} & =100+9 \times 2^{2}-4 \times 5^{2} \\
& =36
\end{aligned}
$$

全 UTrHfrir

Mr. Mreqsoon frr
ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON MATHEMATICS
BY
M. MAQSOOD ALI

FROM WEBSITE
www.mathbunch.com

$$
\text { coeff. of } x^{2}=5 \neq b^{2}=8 / 3
$$

so that when a^{2} or b^{2} or both are in fraction, then in general equation of hyperbola.

$$
\begin{aligned}
& \text { coeff. of } y^{2} \neq a^{2} \\
& \text { coeff. of } x^{2} \neq b^{2}
\end{aligned}
$$

In this case to find a^{2} and b^{2} convert the general equation into standard equation of hyperbola.
MCQ-7:
What are the vertices of hyperbola
$7(y-2)^{2}-9(x+1)^{2}=63$?
(a) $(-1,-1),(-1,5)$
(b) $(-1,8),(-1,2)$
(c) $(2,-1),(2,5)$
(d) $(2,6),(2,9)$

Solution:

Transverse axis is parallel to y-axis.

Standard equation of hyperbola

$$
b^{2}(y-k)^{2}-a^{2}(x-h)^{2}=a^{2} b^{2} \rightarrow(2)
$$

$$
a^{2}=\frac{63}{7}=9, \quad b^{2}=\frac{63}{9}=7, \quad h=-1, \quad k=2
$$

$\Rightarrow a=3$

Vertices	$(h, \pm a+k)$,
	$=(-1, \pm 3+2)$
	$=(-1,5),(-1,-1)$

The answer is (a).

MCQ-8 :

What are the foci of hyperbola

$$
\frac{x^{2}}{5}-\frac{(y-1)^{2}}{4}=1 ?
$$

(a) $(4,1),(-4,1)$
(b) $(-3,1),(5,1)$
(c) $(-3,1),(3,1)$
(d) $(-2,3),(2,3)$

Solution:

The answer is (c).

CENTRE OF HYPERBOLA

Equation of hyperbola centre at (h, k)

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

$$
b^{2}(x-h)^{2}-a^{2}(y-k)^{2}=a^{2} b^{2}
$$

$b^{2}\left(x^{2}-2 h x+h^{2}\right)-a^{2}\left(y^{2}-2 k y+k^{2}\right)=a^{2} b^{2}$
$b^{2} x^{2}-2 b^{2} h x+b^{2} h^{2}-a^{2} y^{2}+2 a^{2} k y+a^{2} k^{2}-a^{2} b^{2}=0$
$b^{2} x^{2}-a^{2} y^{2}-2 b^{2} h x+2 a^{2} k y+b^{2} h^{2}+a^{2} k^{2}-a^{2} b^{2}=0$
$b^{2} x^{2}-a^{2} y^{2}-2 b^{2} h x+2 a^{2} k y+b^{2} h^{2}+a^{2} k^{2}-a^{2} b^{2}=0$
so that

$$
\begin{array}{ll}
h=-\frac{-2 h b^{2}}{2 b^{2}}, & k=-\frac{2 k a^{2}}{2 a^{2}} \\
h=-\frac{(\text { coeff.ofx })}{2\left(\text { coeff.of } x^{2}\right)}, \quad k=-\frac{\text { coeff.ofy }}{2\left(\text { coeff.ofy } y^{2}\right)}
\end{array}
$$

MCQ- 9:
What is the centre of the hyperbola

$$
8 y^{2}-5 x^{2}+10 x+80 y+155=0 ?
$$

(a) $(5,-8)$
(b) $(2,-8)$
(c) $(3,-6)$
(d) $(1,-5)$

Solution:

$$
\begin{array}{rlrl}
h & =-\frac{\text { coeff.of } x}{2\left(\operatorname{coeff.ofx^{2})}\right.} \quad, k & =-\frac{\operatorname{coeff} . \text { of } y}{2\left(\text { coeff .of } y^{2}\right)} \\
h & =-\frac{10}{2(-5)} & , k & =-\frac{80}{2(8)} \\
& =1 & , & =-5
\end{array}
$$

Centre at $(1,-5)$.

(1) What is the vertex of the hyperbola $5(x-1)^{2}-16(y-3)^{2}=80$?
(a) $(2,5)$
(b) $(1,7)$
(c) $(3,5)$
(d) $(-3,3)$
(2) What is the vertex of the hyperbola $4(y-3)^{2}-16 x^{2}=64$?
(a) $(3,2)$
(b) $(0,7)$
(c) $(4,3)$
(d) $(0,3)$
(3) What is a focus of the hyperbola $10 y^{2}-15(x-2)^{2}=90$?
(a) $(2, \sqrt{10})$
(b) $(2,-5)$
(c) $(0,5)$
(d) $(0, \sqrt{15})$
(4) What is an equation of directrix of hyperbola $6 y^{2}-15(x-2)^{2}=90$?
(a) $x=6$
(b) $y=-3$
(c) $y=5$
(d) $x=7$
(5) What is an equation of directrix of hyperbola
$10(x+2)^{2}-10(y-3)^{2}=60 ?$
(a) $x=0.5$
(b) $x=4.5$
(c) $y=2.5$
(d) $y=3$
(6) What is the length of latus rectum of the hyperbola
$9(y-2)^{2}-36(x-1)^{2}=36 \times 9 ?$
(a) 5
(b) 9
(c) 3
(d) 6

EQUATION OF TANGENT TO HYPERBOLA
Equation of tangent to the hyperbola at point $\left(x_{1}, y_{1}\right)$.

S.NO.	EQUATION OF HYPERBOLA	EQUATION OF TANGENT
i	$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$	$\frac{x x_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}=1$
ii	$\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$	$\frac{y y_{1}}{a^{2}}-\frac{x x_{1}}{b^{2}}=1$
	or	
i	$b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}$	$b^{2} x x_{1}-a^{2} y y_{1}=a^{2} b^{2}$
ii	$b^{2} y^{2}-a^{2} x^{2}=a^{2} b^{2}$	$b^{2} y y_{1}-a^{2} x x_{1}=a^{2} b^{2}$

MCQ- 10:
What is the equation of tangent to the hyperbola $x^{2}-y^{2}=16$ at point $(-5,3)$?
(a) $3 x-y+18=0$
(b) $5 x+3 y+9=0$
(c) $2 x-5 y+25=0$
(d) $5 x+3 y+16=0$

Solution:

The answer is (d).

TANGENTS AT VERTICES

The tangents at the vertices are parallel to x-axis or y-axis.
Case-1: Transverse axis is along x-axis:

AUTMHOR

Mr MrA@SOOD ATI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
aLL BOOKS AND CD ON MATHEMATICS BY
M. MAQSOOD ALI

FROM WEBSITE
www.mathbunch.com

$$
\begin{gathered}
y=\frac{k}{5} x+\frac{9}{5} \\
m=\frac{k}{5} \quad, \quad c=\frac{9}{5}
\end{gathered}
$$

Conduction of tangency

$$
\begin{aligned}
& c^{2}=-b^{2} m^{2}+a^{2} \\
& \frac{81}{25}=-9 \times \frac{k^{2}}{25}+9 \\
& \frac{9 k^{2}}{25}=9-\frac{81}{25} \\
& k^{2}=16 \\
& k= \pm 4
\end{aligned}
$$

The answer is (c).

(1) $k=$?, if the line $y=k x+3$ is tangent to the hyperbola $4 x^{2}-9 y^{2}=36$?
(a) $\frac{\sqrt{7}}{2}$
(b) $\frac{5}{2}$
(c) $\frac{\sqrt{5}}{3}$
(d) $\frac{\sqrt{13}}{3}$

尽 Trruroore

ME ME AQSOOD ATIT
ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON MATHEMATICS
BY
M. MAQSOOD ALI

FROM WEBSITE
www.mathbunch.com

