

Chapter 9

ELLIPSE CENTRE AT ORIGIN

Formulae: (Same for both types of ellipses)

i) $c^{2}=a^{2}-b^{2}$
ii) $b^{2}=a^{2}\left(1-e^{2}\right)$
iii) $e=c / a$
iv) $c=a e$
v) Length of latus rectum $=\frac{2 b^{2}}{a}$
vi) Length of major axis $=2 a$
vii) Length of minor axis $=2 b$
viii) Semi major axis= a
ix) Semi minor axis= b
x) Distance between foci= $2 c$
xi) Distance between directrices $=2\left(\frac{a^{2}}{c}\right)$

MCQ-1:

What are the vertices or the ellipse $9 x^{2}+25 y^{2}=225$?
(a) $(0, \pm 3)$
(b) $(\pm 3,0)$
(c) $(\pm 5,0)$
(d) $(0, \pm 5)$

Solution:

Center at origin and major axis is along x-axis $\{\because 9<25$

$$
\begin{aligned}
& \qquad \begin{array}{l}
a^{2}=25 \\
\quad a=5
\end{array} \\
& \text { vertices at }(\pm 5,0)
\end{aligned}
$$

The answer is (c).

众U匠界OR

MT MTAQSTOOD 尽TI
ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON MATHEMATICS
BY
M．MAQSOOD ALI
FROM WEBSITE
www．mathbunch．com

$$
\begin{aligned}
c^{2} & =36 \\
c & =6
\end{aligned}
$$

$$
\begin{aligned}
& \text { Foci at }(\pm c, 0) \\
& \hline F(\pm 6,0)
\end{aligned}
$$

The answer is (d).

(1) What is the vertices of the ellipse $25 x^{2}+9 y^{2}=225$?
(a) $(0, \pm 5)$
(b) $(\pm 5,0)$
(c) $(0, \pm 3)$
(d) $(\pm 3,0)$
(2) What are the foci of the ellipse $16 x^{2}+25 y^{2}=400$?
(a) $(\pm 5,0)$
(b) $(0, \pm 3)$
(c) $(\pm 3,0)$
(d) $(0, \pm 5)$
(3) What are the coordinates of end-point of minor axis of the ellipse

$$
9 x^{2}+4 y^{2}=36 ?
$$

(a) $(\pm 3,0)$
(b) $(0, \pm 3)$
(c) $(0, \pm 2)$
(d) $(\pm 2,0)$
(4) What are the equations of the directrices of an ellipse $4 x^{2}+20 y^{2}=80$?
(a) $y= \pm 2$
(b) $x= \pm 5$
(c) $x= \pm \frac{5}{2}$
(d) $y= \pm \frac{10}{3}$
(5) What is the eccentricity of the ellipse $25 x^{2}+9 y^{2}=225$?
(a) $\frac{2}{5}$
(b) $\frac{5}{4}$
(c) $\frac{3}{5}$
(d) $\frac{4}{5}$
(6) What is the length of latus rectum of the ellipse $16 x^{2}+4 y^{2}=64$?
(a) 1
(b) 2
(c) 4
(d) 8
(7) What is the length of the latus rectum of an ellipse if length of major axis and minor axis are 8 and 6 respectively?
(a) 10
(b) 64
(c) 9
(d) 4.5
(8) Semi major axis and semi minor axis of an ellipse are 5 and 3 respectively. What is the eccentricity?
(a) $\frac{9}{25}$
(b) $\frac{3}{5}$
(c) $\frac{4}{5}$
(d) $\frac{16}{25}$
(9) The eccentricity of an ellipse whose centre is at origin is $\frac{4}{5}$. The length of major axis is 20 and lies on y-axis. What are the foci?
(a) $(0, \pm 10)$
(b) $(0, \pm 25)$
(c) $(0, \pm 6)$
(d) $(0, \pm 8)$
(10) e is the eccentricity of an ellipse. Which is true?
(a) $e=1$
(b) $e>1$
(c) $e<1$
(d) $e=0$
(11) e is the eccentricity of an ellipse. Which is the possible value of e ?
(a) 0.8
(b) 1
(c) 2.5
(d) -0.5

EQUATION OF ELLIPSE

MCQ-4 :

What is the equation of ellipse vertices at $(\pm 6,0)$ and foci $(\pm 4,0)$?
(a) $36 x^{2}+16 y^{2}=576$
(b) $16 x^{2}+36 y^{2}=576$
(c) $20 x^{2}+36 y^{2}=720$
(d) None

Solution:
Vertices $(\pm 6,0)$

$$
\because \text { ordinate }=0
$$

\therefore centre at origin, major axis is along x -axis and
$a=6$
$a^{2}=36$

$c^{2}=16$

$$
\begin{aligned}
c^{2} & =a^{2}-b^{2} \\
b^{2} & =a^{2}-c^{2} \\
\hline b^{2} & =36-16 \\
& =20
\end{aligned}
$$

\because major axis is along x -axis
coeff.of $x^{2}<$ coeff.of y^{2}
Equation of ellipse is

$$
20 x^{2}+36 y^{2}=720
$$

The answer is (c).

(1) What is the equation of ellipse centre at origin, vertices at $(0, \pm 4)$ and foci at $(0, \pm 2)$?
(a) $16 x^{2}+4 y^{2}=32$
(b) $4 x^{2}+16 y^{2}=32$
(c) $12 x^{2}+16 y^{2}=192$
(d) $16 x^{2}+12 y^{2}=192$

全 UTrHfrir

MT MTAQSTOOD 尽TI
ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON MATHEMATICS
BY
M. MAQSOOD ALI

FROM WEBSITE
www.mathbunch.com

ELLIPSE CENTRE AT (h, k)

Comparison:

The comparison of equations of ellipses "centre at origin" and "centre at (h, k):

Centre at origin	Centre at (h, k)
Major axis is along x-axis: i) Equation of ellipse $\begin{gathered} \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\ \text { or } \\ b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2} \end{gathered}$ ii) Vertices at $(\pm a, 0)$ iii) Foci at $(\pm c, 0)$	Major axis is along x-axis: i) Equation of ellipse $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$ or $b^{2}(x-h)^{2}+a^{2}(y-k)^{2}=a^{2} b^{2}$ ii) Vertices at $(\pm a+h, k)$ iii) Foci at $(\pm c+h, k)$
Major axis is along y-axis: i) Equation of ellipse $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$ or $a^{2} x^{2}+b^{2} y^{2}=a^{2} b^{2}$ ii) Vertices at $(0, \pm a)$ iii) Foci at $(0, \pm c)$	Major axis is along y-axis: i) Equation of ellipse $\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1$ or $a^{2}(x-h)^{2}+b^{2}(y-k)^{2}=a^{2} b^{2}$ ii) Vertices at $(h, \pm a+k)$ iii) Foci at $(h, \pm c+k)$

Formulae: (Same for both types of ellipses)

i) $c^{2}=a^{2}-b^{2}$
ii) $b^{2}=a^{2}\left(1-e^{2}\right)$
iii) $e=c / a$
iv) $c=a e$
v) Length of latus rectum $=\frac{2 b^{2}}{a}$
vi) Length of major axis $=2 a$
vii) Length of minor axis $=2 b$
viii) Semi major axis=a
ix) Semi minor axis $=b$
x) Distance between foci=2c
xi) Distance between directrices $=2\left(\frac{a^{2}}{c}\right)$

MCQ-5 : What are the vertices of the ellipse

$$
4(x-6)^{2}+9(y+5)^{2}=36 ?
$$

(a) $(3,-5),(9,-5)$
(b) $(-2,9),(8,6)$
(c) $(-4,6),(8,6)$
(d) $(9,-5),(3,-5)$

Solution:

$$
\begin{aligned}
& \because \text { Coeff. of }(x-6)^{2}<\text { Coeff. of }(y+5)^{2} \\
& \therefore \text { Major axis is along x-axis }
\end{aligned}
$$

$$
\begin{array}{lll}
a^{2}=\frac{36}{4}=9 & \Rightarrow & a=3 \\
b^{2}=\frac{36}{9}=4 & \Rightarrow & b=2, \\
(x-6)^{2} & \Rightarrow & h=6 \\
(y+5)^{2} & \Rightarrow & k=-5
\end{array}
$$

Vertices at	$(\pm a+h, k)$
	$=(\pm 3+6,-5)$
	$=(9,-5),(3,-5)$

The answer is (d).

TO FIND CENTRE OF THE ELLIPSE

If the given equation of ellipse is in general form.
Note: $\left\{a^{2}\right.$ and b^{2} are not in fraction they are positive integers.
So that
(i) Coefficient of $x^{2}=a^{2}$ or b^{2}
(ii) Coefficient of $y^{2}=b^{2}$ or $\left.a^{2}\right\}$

Standard equation of the ellipse centre at (h, k)

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

$b^{2}(x-h)^{2}+a^{2}(y-k)^{2}=a^{2} b^{2}$
$b^{2}\left(x^{2}-2 h x+h^{2}\right)+a^{2}\left(y^{2}-2 k y+k^{2}\right)=a^{2} b^{2}$
$b^{2} x^{2}-2 h b^{2} x+b^{2} h^{2}+a^{2} y^{2}-2 k a^{2} y+a^{2} k^{2}=a^{2} b^{2}$
$b^{2} x^{2}+a^{2} y^{2}-2 h b^{2} x-2 k a^{2} y+b^{2} h^{2}+a^{2} k^{2}-a^{2} b^{2}=0$
$b^{2} x^{2}+a^{2} y^{2}+2(-h) b^{2} x+2(-k) a^{2} y+b^{2} h^{2}+a^{2} k^{2}-a^{2} b^{2}=0$
is the general equation of ellipse.

$$
\begin{array}{ll}
h=-\frac{2(-h) b^{2}}{2 b^{2}}, \quad k=-\frac{2(-k) a^{2}}{2 a^{2}} \\
h & =-\frac{\operatorname{coeff.ofx}}{2\left(\operatorname{coeff.ofx^{2})}\right.},
\end{array} \quad k=-\frac{\operatorname{coeff.ofy}}{2\left(\operatorname{coeff}, \text { of } y^{2}\right)}
$$

MCQ- 6 :
What is the centre of the ellipse

$$
6 x^{2}+10 y^{2}+36 x-160 y+634=0 ?
$$

a^{2} and b^{2} are positive integers, not in fraction.
(a) $(-4,6)$
(b) $(-3,8)$
(c) $(-9,16)$
(d) $(-2,10)$

众U匠界OR

MT MTAQSTOOD 尽TI
ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD

ALL BOOKS AND CD ON MATHEMATICS BY
M．MAQSOOD ALI
FROM WEBSITE
www．mathbunch．com

MCQ-8 :

What is the eccentricity of the following

$$
16 x^{2}+9 y^{2}-64 x-90 y+145=0 ?
$$

a^{2} and b^{2} are positive integers.
(a) $\sqrt{7} / 16$
(b) $7 / 16$
(c) $\sqrt{7} / 4$
(d) $1 / 4$

Solution:

$$
\begin{aligned}
& \text { Coeff.of } x^{2} \text { and } y^{2} \text { both are positive, so it is the equation of ellipse. } \\
& \text { Coeff. of } y^{2}<\text { coeff. of } x^{2} \\
& \qquad a^{2}=16 \text { and } b^{2}=9
\end{aligned}
$$

There is no need for eccentrity, that major axis is along x-axis or y-axis, and eccentriaty does not depend on the center of allipse

The answer is (c).

MCQ- 9:
What is the eccentricity of the ellipse

$$
64 x^{2}+9 y^{2}-256 x-90 y+337=0 ?
$$

(a) $\sqrt{55} / 8$
(b) $\sqrt{73} / 8$
(c) $4 / 3$
(d) $25 / 6$

Solution:

Given options
(a) $\frac{\sqrt{55}}{8}<1$
(b) $\frac{\sqrt{3}}{8}>1$
(c) $\frac{4}{3}>1$
(d) $\frac{25}{6}>1$

For ellipse e<1
The answer is (a).
MCQ- 10:
What is the length of latus rectum of the ellipse

$$
4 x^{2}+9 y^{2}-48 x-144 y+684=0 ?
$$

a^{2} and b^{2} are positive integers.
(a) 13
(b) 9
(c) $8 / 9$
(d) $8 / 3$

Solution:

$$
\text { coeff. of } x^{2}<\text { coeff. of } y^{2}
$$

Major axis is along x-axis.

$$
\begin{aligned}
& a^{2}=9 \quad \text { and } \quad b^{2} \\
&=4 \\
& a=3 \quad, \quad b
\end{aligned}=4
$$

$$
\begin{aligned}
\text { Length of latus rectum } & =2 b^{2} / a \\
& =\frac{2 \times 4}{3} \\
& =8 / 3
\end{aligned}
$$

The answer is (d).

HOW TO CONVERT INTO STANDARD FORM

Note: \{Convert general equation into standard equation when it is not conform (or not given) that a^{2} and b^{2} are in fractions or positive integers.\}
Case-1: a^{2} and b^{2} are not in fraction, they are positive integers.

$$
4 x^{2}+25 y^{2}-16 x+150 y+141=0 \quad \rightarrow(1)
$$

Coeff. of $x^{2}\left(x-\frac{\operatorname{coeff.of} x}{2 . \operatorname{coeff.of} x^{2}}\right)^{2}+$ Coeff. of $y^{2}\left(y-\frac{\operatorname{coeff.of} y}{2 . \operatorname{coeff.of} y^{2}}\right)^{2}=$

$$
-141+\text { Coeff. of } x^{2}\left(\frac{\text { coeff.of } x}{2 . \operatorname{coeff.of} x^{2}}\right)^{2}+\text { Coeff. of } y^{2}\left(\frac{\text { coeff.of } y}{2 . \operatorname{coeff.of} y^{2}}\right)^{2}
$$

First step: (For L.H.S) Incomplete equation

$$
4\left(x-\frac{16}{2 \times 4}\right)^{2}+25\left(y+\frac{150}{2 \times 25}\right)^{2}
$$

Second step:

$$
\begin{aligned}
4(x-2)^{2}+25(y+3)^{2} & =-141+4 \times 2^{2}+25 \times 3^{2} \\
& =100
\end{aligned}
$$

$$
\begin{equation*}
\frac{(x-2)^{2}}{25}+\frac{(y+3)^{2}}{4}=1 \tag{2}
\end{equation*}
$$

is the standard equation.
By equation (2)

$$
\Rightarrow a^{2}=25, \quad b^{2}=4
$$

According to equation (1)
coeff. of $x^{2}=b^{2}=4$
coeff. of $y^{2}=a^{2}=25$
Case-2: a^{2} and b^{2} are in fraction.

$$
\begin{aligned}
8 x^{2}+25 y^{2}-32 x+150 y+ & 157=0 \\
8(x-2)^{2}+25(y+3)^{2} & =-157+8 \times 2^{2}+25 \times 3^{2} \\
& =100 \\
\frac{2(x-2)^{2}}{25}+\frac{(y+3)^{2}}{4} & =1
\end{aligned}
$$

众U匠界OR

MT MTAQSTOOD 尽TI
ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON MATHEMATICS
BY
M．MAQSOOD ALI
FROM WEBSITE
www．mathbunch．com
(7) What is focus of the ellipse $8(x+2)^{2}+24(y+1)^{2}=24$.
(a) $(2,-1)$
(b) $(3,-2)$
(c) $(-2,-1)$
(d) $(-1,2)$
(8) What is a focus of the ellipse $6(x-5)^{2}+2(y-3)^{2}=12$.
(a) $(5,4)$
(b) $(5,2)$
(c) $(5,5)$
(d) $(7,4)$
(9) e is the eccentricity of the ellipse $a^{2}(x-h)^{2}+b^{2}(y-k)^{2}=a^{2} b^{2}$.

What are the coordinates of the foci?
(a) $(h \pm a e, k)$
(b) $(h, k \pm a e)$
(c) $(0 \pm a e)$
(d) $(k, h \pm a e)$
(10) What is an equation of directrix of the ellipse $3(x-2)^{2}+12(y-6)^{2}=36$?
(a) $y=5$
(b) $x=2$
(c) $x=4$
(d) $x=6$
(11) What is an equation of directrix of the ellipse $20(x-5)^{2}+4(y-3)^{2}=80$?
(a) $y=8$
(b) $x=8$
(c) $y=10$
(d) $x=10$
(12) What is an equation of directrix of the ellipse $20(x-5)^{2}+4(y-3)^{2}=80$?
(a) $x=-2$
(b) $x=0$
(c) $y=-2$
(d) $y=6$
(13) $e=\frac{c}{a}$ is the eccentricity of the ellipse $b^{2}(x-h)^{2}+a^{2}(y-k)^{2}=a^{2} b^{2}$. Which are the equation of the directrices?
(a) $x=k \pm \frac{a^{2}}{c}$
(b) $y=k \pm \frac{a^{2}}{c}$
(c) $y=h \pm \frac{a^{2}}{c}$
(d) $x=h \pm \frac{a^{2}}{c}$
(14) What is the eccentricity of the ellipse $25(x-9)^{2}+9(y-7)^{2}=225$?
(a) $\frac{4}{5}$
(b) $\frac{5}{2}$
(c) $\frac{11}{14}$
(d) $\frac{3}{5}$
(15) What is the eccentricity of the ellipse $b^{2}(x-h)^{2}+a^{2}(y-k)^{2}=a^{2} b^{2}$?
(a) $\frac{c-k}{a-h}$
(b) ac
(c) $\frac{a}{c}$
(d) $\frac{c}{a}$
(16) What is the length of latus rectum of the ellipse

$$
64(x-3)^{2}+16(y+7)^{2}=1024 ?
$$

(a) 1.8
(b) $\frac{3}{2}$
(c) 0.5
(d) 4

EQUATION OF TANGENT TO THE ELLIPSE

Equation of tangent to the ellipse at point $\left(x_{1}, y_{1}\right)$.

S.No.	EQUATION OF ELLIPSE	EQUATION OF TANGENT
1	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	$\frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}=1$
2	$\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$	$\frac{x x_{1}}{b^{2}}+\frac{y y_{1}}{a^{2}}=1$

OR

1	$b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$	$b^{2} x x_{1}+y y_{1} a^{2}=a^{2} b^{2}$
2	$a^{2} x^{2}+b^{2} y^{2}=a^{2} b^{2}$	$a^{2} x x_{1}+b^{2} y y_{1}=a^{2} b^{2}$

Note: The tangents at the vertices and end points of minor axis is parallel to x -axis or y -axis.
Case-1: Major axis is along x-axis:
i) Equation of tangent at $(a, 0)$ and $(-a, 0)$:

$$
x=a \text { and } x=-a \text { respectively. }
$$

ii) Equation of tangent at $(0, b)$ and $(0,-b)$: $y=b$ and $y=-b$ respectively.
Case-2: Major axis is along y-axis:
i) Equation of tangent at $(0, a)$ and $(0,-a)$: $y=a$ and $y=-a$ respectively.
ii) Equation of tangent at $(b, 0)$ and $(-b, 0)$:
$x=b$ and $x=-b$ respectively.

MCQ-11 :

What is the equation of tangent to the ellipse $16 x^{2}+25 y^{2}=400$ at point $\left(3, \frac{8}{5}\right)$?
(a) $6 x+5 y-50=0$
(b) $6 x+5 y-16=0$
(c) $15 x+5 y+53=0$
(d) $2 x+8 y+13=0$

Solution:

$$
x_{1}=3
$$

Equation of tangent

$$
\begin{aligned}
16 x x_{1}+25 y y_{1} & =400 \\
16(3) x+25\left(\frac{8}{5}\right) y & =400 \\
48 x+40 y & =400 \\
6 x+5 y & =50
\end{aligned}
$$

The answer is (a).

(1) What is the equation of tangent to the ellipse $9 x^{2}+4 y^{2}=36$ at $(2,-3)$?
(a) $6 x-8 y=36$
(b) $2 x-3 y=6$
(c) $18 x-12 y=36$
(d) $9 x+4 y=36$
(2) What is the equation of the tangent drawn at a vertex of the ellipse
$16 x^{2}+9 y^{2}=144 ?$
(a) $y=4$
(b) $x=4$
(c) $y=2$
(d) $x=-2$
(3) What is the equation of the tangent drawn to a vertex of the ellipse $4(x-2)^{2}+9(y-1)^{2}=36 ?$
(a) $x=-5$
(b) $y=-5$
(c) $x=5$
(d) $y=5$

CONDITION OF TANGENCY

S.No	EQ. OF ELLIPSE	EQ. OF ST. LINE	CONDITION OF TANGENCY
1	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	$y=m x+c$	$c^{2}=a^{2} m^{2}+b^{2}$
or			
$b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$			
2	$\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$	$y=m x+c$	
or			
$a^{2} x^{2}+b^{2} y^{2}=a^{2} b^{2}$		$c^{2}=b^{2} m^{2}+a^{2}$	

MCQ- 12:
$a^{2}=?$, if the line $y=\sqrt{5} x+7$ touches the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{4}=1
$$

(a) 25
(b) 9
(c) 49
(d) 16

Solution:

Condition of tangency
$c^{2}=a^{2} m^{2}+b^{2}$
$49=5 a^{2}+4$
$a^{2}=9$

The answer is (b).

(1) $b^{2}=$? if the line $y=3 x+10$ touches the ellipse $\frac{x^{2}}{6}+\frac{y^{2}}{b^{2}}=1 ?$
(a) 46
(b) 64
(c) 32
(d) 82

Mr Mreqsool frix
ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON MATHEMATICS
BY
M. MAQSOOD ALI

