

Chapter 9

ELLIPSES

ELLIPSE CENTRE AT ORIGIN

Major axis is along y-axis

i) Equation of ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

or

$$b^2 x^2 + a^2 y^2 = a^2 b^2$$

- ii) Vertices at $(\pm a, 0)$
- iii) Foci at $(\pm c, 0)$
- iv) Equation of directrices

$$x = \pm \frac{a^2}{c}$$
 or $x = \pm \frac{a}{e}$

i) Equation of ellipse

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$

or

$$a^2x^2 + b^2y^2 = a^2b^2$$

- ii) Vertices at $(0, \pm a)$
- iii) Foci at $(0, \pm c)$
- iv) Equation of directrices

$$y = \pm \frac{a^2}{c} \quad or \quad y = \pm \frac{a}{e}$$

Formulae: (Same for both types of ellipses)

i)
$$c^2 = a^2 - b^2$$

ii)
$$b^2 = a^2(1 - e^2)$$

iii)
$$e = c/a$$

iv)
$$c = ae$$

- v) Length of latus rectum= $\frac{2b^2}{a}$
- vi) Length of major axis = 2a
- vii) Length of minor axis = 2b
- viii) Semi major axis= a
- ix) Semi minor axis= b
- x) Distance between foci= 2c
- xi) Distance between directrices = $2(\frac{a^2}{c})$

MCQ-1:

What are the vertices or the ellipse $9x^2 + 25y^2 = 225$?

(a)
$$(0, \pm 3)$$

(b)
$$(\pm 3, 0)$$

(c)
$$(\pm 5, 0)$$

(d)
$$(0, \pm 5)$$

Solution:

$$9x^2 + 25y^2 = 225$$

$$b^2x^2 + a^2y^2 = a^2b^2$$

Center at origin and major axis is along x-axis $\{: 9 < 25$

$$a^2 = 25$$

$$a^2 = 25 \qquad \{\because a^2 = \frac{225}{9} = 25$$

$$a = 5$$

vertices at $(\pm 5, 0)$

The answer is (c).

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON MATHEMATICS
BY

M. MAQSOOD ALI

FROM WEBSITE

 $c^{2} = 36$ c = 6Foci at $(\pm c, 0)$ $F(\pm 6, 0)$

The answer is (d).

(1)	What is the vert	ices of the ellipse 2	$5x^2 + 9y^2 = 225?$	
	(a) (0, ± 5)	(b) (± 5, 0)	(c) (0, ± 3)	(d) (± 3, 0
(2)	What are the foo	ci of the ellipse $16x$	$^2 + 25v^2 = 400$?	

(a) $(\pm 5, 0)$ (b) $(0, \pm 3)$ (c) $(\pm 3, 0)$ (d) $(0, \pm 5)$ (3) What are the coordinates of end-point of minor axis of the ellipse

$$9x^2 + 4y^2 = 36?$$
(a) (± 3, 0) (b) (0, ± 3) (c) (0, ± 2) (d) (± 2, 0)

(4) What are the equations of the directrices of an ellipse $4x^2 + 20y^2 = 80$?

(a)
$$y = \pm 2$$
 (b) $x = \pm 5$ (c) $x = \pm \frac{5}{2}$ (d) $y = \pm \frac{10}{3}$

(5) What is the eccentricity of the ellipse $25x^2 + 9y^2 = 225$?

(a)
$$\frac{2}{5}$$
 (b) $\frac{5}{4}$ (c) $\frac{3}{5}$ (d) $\frac{4}{5}$

(6) What is the length of latus rectum of the ellipse $16x^2 + 4y^2 = 64$?

minor axis are 8 and 6 respectively?

What is the eccentricity?

(a)
$$\frac{9}{25}$$
 (b) $\frac{3}{5}$ (c) $\frac{4}{5}$ (d) $\frac{16}{25}$

(9) The eccentricity of an ellipse whose centre is at origin is $\frac{4}{5}$. The length of major axis is 20 and lies on y-axis. What are the foci?

- (a) (0, ± 10)
- (b) (0, ± 25)
- (c) $(0, \pm 6)$
- (d) $(0, \pm 8)$

(10) e is the eccentricity of an ellipse. Which is true?

- (a) e = 1
- (b) e > 1
- (c) e < 1
- (d) e = 0

(11) e is the eccentricity of an ellipse. Which is the possible value of e?

- (a) 0.8
- (b) 1
- (c) 2.5
- (d) -0.5

EQUATION OF ELLIPSE

MCQ-4:

What is the equation of ellipse vertices at $(\pm 6,0)$ and foci $(\pm 4,0)$?

(a)
$$36x^2 + 16y^2 = 576$$

(b)
$$16x^2 + 36y^2 = 576$$

(c)
$$20x^2 + 36y^2 = 720$$

Solution:

Vertices (± 6 , 0)

∵ordinate = 0

∴ centre at origin, major axis is along x-axis and

$$a = 6$$

$$a^2 = 36$$

foci (±4,0)

$$c = 4$$

$$c^2 = 16$$

$$c^2 = a^2 - b^2$$

$$b^2 = a^2 - c^2$$

$$b^2 = 36 - 16$$
$$= 20$$

· major axis is along x-axis

 $coeff.of x^2 < coeff.of y^2$

Equation of ellipse is

$$20x^2 + 36y^2 = 720$$

The answer is (c).

EXERCISE-2

(1) What is the equation of ellipse centre at origin, vertices at $(0, \pm 4)$ and foci at $(0, \pm 2)$?

(a)
$$16x^2 + 4y^2 = 32$$

(b)
$$4x^2 + 16y^2 = 32$$

(c)
$$12x^2 + 16y^2 = 192$$

$$(d)16x^2 + 12y^2 = 192$$

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON MATHEMATICS

BY

M. MAQSOOD ALI

FROM WEBSITE

ELLIPSE CENTRE AT (h,k)

Comparison:

The comparison of equations of ellipses "centre at origin" and "centre at (h, k):

Centre at origin	Centre at (h, k)
Major axis is along x-axis:	Major axis is along x-axis:
i) Equation of ellipse	i) Equation of ellipse
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$
or	or
$b^2x^2 + a^2y^2 = a^2b^2$	$b^{2}(x-h)^{2} + a^{2}(y-k)^{2} = a^{2}b^{2}$
ii) Vertices at $(\pm a, 0)$	ii) Vertices at $(\pm a + h, k)$
iii) Foci at $(\pm c, 0)$	iii) Foci at $(\pm c + h, k)$
Major axis is along y-axis:	Major axis is along y-axis:
i) Equation of ellipse	i) Equation of ellipse
$\frac{x^2}{h^2} + \frac{y^2}{a^2} = 1$	$\frac{(x-h)^2}{h^2} + \frac{(y-k)^2}{a^2} = 1$
$b^2 + a^2 - 1$	b^2 a^2 -1
or	or
$a^2x^2 + b^2y^2 = a^2b^2$	$a^{2}(x-h)^{2} + b^{2}(y-k)^{2} = a^{2}b^{2}$
ii) Vertices at $(0, \pm a)$	ii) Vertices at $(h, \pm a + k)$
iii) Foci at $(0, \pm c)$	iii) Foci at $(h, \pm c + k)$

Formulae: (Same for both types of ellipses)

i)
$$c^2 = a^2 - b^2$$

ii)
$$b^2 = a^2(1 - e^2)$$

iii)
$$e = c/a$$

iv)
$$c = ae$$

- v) Length of latus rectum= $\frac{2b^2}{a}$
- vi) Length of major axis = 2a
- vii) Length of minor axis = 2b
- viii) Semi major axis= a
- ix) Semi minor axis= b
- x) Distance between foci= 2c
- xi) Distance between directrices= $2(\frac{a^2}{c})$

MCQ-5: What are the vertices of the ellipse

$$4(x-6)^2 + 9(y+5)^2 = 36$$
?

(a)
$$(3,-5), (9,-5)$$

(c)
$$(-4,6)$$
, $(8,6)$

(d)
$$(9, -5), (3, -5)$$

Solution:

$$\therefore$$
 Coeff. of $(x-6)^2$ < Coeff. of $(y+5)^2$

∴Major axis is along x-axis

$$a^2 = \frac{36}{4} = 9 \qquad \Rightarrow \quad a = 3$$

$$b^2 = \frac{36}{9} = 4 \qquad \Rightarrow \quad b = 2,$$

$$(x-6)^2 \qquad \Rightarrow \quad h = 6$$

$$(y+5)^2 \qquad \Rightarrow \qquad k = -5$$

Vertices at $(\pm a + h, k)$

$$=(\pm 3+6,-5)$$

$$=(9,-5),(3,-5)$$

The answer is (d).

TO FIND CENTRE OF THE ELLIPSE

If the given equation of ellipse is in general form.

Note: $\{a^2 \text{ and } b^2 \text{ are not in fraction they are positive integers.}$

So that

- (i) Coefficient of $x^2 = a^2$ or b^2
- (ii) Coefficient of $y^2 = b^2$ or a^2 }

Standard equation of the ellipse centre at (h,k)

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

$$b^{2}(x-h)^{2} + a^{2}(y-k)^{2} = a^{2}b^{2}$$

$$b^{2}(x^{2} - 2hx + h^{2}) + a^{2}(y^{2} - 2ky + k^{2}) = a^{2}b^{2}$$

$$b^2x^2 - 2hb^2x + b^2h^2 + a^2y^2 - 2ka^2y + a^2k^2 = a^2b^2$$

$$b^2x^2 + a^2y^2 - 2hb^2x - 2ka^2y + b^2h^2 + a^2k^2 - a^2b^2 = 0$$

$$b^{2}x^{2} + a^{2}y^{2} + 2(-h)b^{2}x + 2(-k)a^{2}y + b^{2}h^{2} + a^{2}k^{2} - a^{2}b^{2} = 0$$

is the general equation of ellipse.

$$h = -\frac{2(-h)b^2}{2h^2}$$

$$k = -\frac{2(-k)a^2}{2a^2}$$

$$h = -\frac{coeff.ofx}{2(coeff.ofx^2)}$$
 , $k = -\frac{coeff.ofy}{2(coeff.ofy^2)}$

$$k = -\frac{coeff.ofy}{2(coeff.ofy^2)}$$

MCQ- 6:

What is the centre of the ellipse

$$6x^2 + 10y^2 + 36x - 160y + 634 = 0?$$

 a^2 and b^2 are positive integers, not in fraction.

(a)
$$(-4, 6)$$

(b)
$$(-3, 8)$$

(b)
$$(-3,8)$$
 (c) $(-9,16)$

(d)
$$(-2, 10)$$

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD

ALL BOOKS AND CD ON MATHEMATICS

BY

M. MAQSOOD ALI

FROM WEBSITE

MCQ-8:

What is the eccentricity of the following

$$16x^2 + 9y^2 - 64x - 90y + 145 = 0?$$

 a^2 and b^2 are positive integers.

(a)
$$\sqrt{7}/16$$

(c)
$$\sqrt{7}/4$$

(d)
$$\frac{1}{4}$$

Solution:

Coeff. of x^2 and y^2 both are positive , so it is the equation of ellipse. Coeff. of y^2 < coeff. of x^2

$$a^2 = 16$$
 and $b^2 = 9$

There is no need for eccentrity, that major axis is along x-axis or y-axis, and eccentriaty does not depend on the center of allipse

$$c^{2} = a^{2} - b^{2}$$

$$c^{2} = 16 - 9$$

$$= 7$$

$$c = \sqrt{7}$$

$$e = \frac{c}{a}$$

$$e = \frac{\sqrt{7}}{4}$$

The answer is (c).

MCQ- 9:

What is the eccentricity of the ellipse

$$64x^2 + 9y^2 - 256x - 90y + 337 = 0?$$

(a)
$$\sqrt{55}/8$$

(b)
$$\sqrt{73}/8$$

Solution:

Given options

(a)
$$\frac{\sqrt{55}}{8}$$
 < 1 (b) $\frac{\sqrt{3}}{8}$ > 1 (c) $\frac{4}{3}$ > 1 (d) $\frac{25}{6}$ > 1

The answer is (a).

MCQ- 10:

What is the length of latus rectum of the ellipse

$$4x^2 + 9y^2 - 48x - 144y + 684 = 0?$$

 a^2 and b^2 are positive integers.

Solution:

coeff. of
$$x^2 <$$
 coeff. of y^2

Major axis is along x-axis.

$$a^2 = 9 \quad \text{and} \quad b^2 = 4$$

$$b^2 = 4$$

$$a = 3$$

$$b = 4$$

Length of latus rectum = $2b^2/a$

$$=\frac{2\times 4}{2}$$

$$= 8/3$$

The answer is (d).

HOW TO CONVERT INTO STANDARD FORM

Note: {Convert general equation into standard equation when it is not conform (or not given) that a^2 and b^2 are in fractions or positive integers.}

Case-1: a^2 and b^2 are not in fraction, they are positive integers.

$$4x^{2} + 25y^{2} - 16x + 150y + 141 = 0 \rightarrow (1)$$
Coeff. of $x^{2}(x - \frac{coeff.of \ x}{2. \ coeff.of \ x^{2}})^{2} + \text{Coeff. of } y^{2}(y - \frac{coeff.of \ y}{2. \ coeff.of \ y^{2}})^{2} =$

$$-141 + \text{Coeff. of } x^{2}(\frac{coeff.of \ x}{2. \ coeff.of \ x^{2}})^{2} + \text{Coeff. of } y^{2}(\frac{coeff.of \ y}{2. \ coeff.of \ y^{2}})^{2}$$

First step: (For L.H.S) Incomplete equation

$$4\left(x - \frac{16}{2\times4}\right)^2 + 25\left(y + \frac{150}{2\times25}\right)^2$$

Second step:

$$4(x-2)^{2} + 25(y+3)^{2} = -141 + 4 \times 2^{2} + 25 \times 3^{2}$$

$$= 100$$

$$\frac{(x-2)^{2}}{25} + \frac{(y+3)^{2}}{4} = 1 \rightarrow (2)$$

is the standard equation.

By equation (2)

$$\Rightarrow a^2 = 25 \quad , \quad b^2 = 4$$

According to equation (1)

coeff. of
$$x^2 = b^2 = 4$$

coeff. of
$$y^2 = a^2 = 25$$

Case-2: a^2 and b^2 are in fraction.

$$8x^{2} + 25y^{2} - 32x + 150y + 157 = 0 \rightarrow (1)$$

$$8(x-2)^{2} + 25(y+3)^{2} = -157 + 8 \times 2^{2} + 25 \times 3^{2}$$

$$= 100$$

$$\frac{2(x-2)^{2}}{25} + \frac{(y+3)^{2}}{4} = 1$$

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

ALL BOOKS AND CD ON MATHEMATICS
BY
M. MAQSOOD ALI
FROM WEBSITE

(7) What is focus of the ellipse $8(x+2)^2 + 24(y+1)^2 = 24$.				
(a) $(2,-1)$	(b) $(3, -2)$	(c) $(-2, -1)$	(d) $(-1, 2)$	
(8) What is a focus of	the ellipse $6(x-5)$	$(5)^2 + 2(y-3)^2 = 1$	12.	
(a) (5, 4)	(b) (5, 2)	(c) (5, 5)	(d) (7, 4)	
(9) e is the eccentrici	ty of the ellipse a^2 ($(x-h)^2 + b^2(y-h)$	$(a)^2 = a^2b^2.$	
What are the coo	ordinates of the foc	i?		
(a) $(h \pm ae, k)$	(b) $(h, k \pm ae)$	(c) $(0 \pm ae)$	(d) $(k, h \pm ae)$	
(10) What is an equati	on of directrix of th	ne ellipse $3(x-2)^2$	$+12(y-6)^2 = 36?$	
(a) $y = 5$	(b) $x = 2$	(c) $x = 4$	(d) $x = 6$	
(11) What is an equati	on of directrix of th	ne ellipse $20(x-5)^2$	$(x^2 + 4(y - 3)^2) = 80$?	
(a) $y = 8$	(b) $x = 8$	(c) $y = 10$	(d) $x = 10$	
(12) What is an equati	on of directrix of th	ne ellipse $20(x-5)$	$^{2} + 4(y-3)^{2} = 80$?	
(a) $x = -2$	(b) $x = 0$	(c) $y = -2$	(d) $y = 6$	
(13) $e = \frac{c}{a}$ is the ecce	(13) $e = \frac{c}{a}$ is the eccentricity of the ellipse $b^2(x-h)^2 + a^2(y-k)^2 = a^2b^2$.			
Which are the eq	uation of the direct	trices?		
(a) $x = k \pm \frac{a^2}{c}$	(b) $y = k \pm \frac{a^2}{c}$	(c) $y = h \pm \frac{a^2}{c}$	(d) $x = h \pm \frac{a^2}{c}$	
(14) What is the eccen	tricity of the ellipse	$=25(x-9)^2+9(y)$	$(-7)^2 = 225$?	
(a) $\frac{4}{5}$	(b) $\frac{5}{2}$	(c) $\frac{11}{14}$	(d) $\frac{3}{5}$	
(15) What is the eccen	tricity of the ellipse	$e b^2(x-h)^2 + a^2(y)$	$(y-k)^2 = a^2b^2$?	
(a) $\frac{c-k}{a-h}$	(b) ac	(c) $\frac{a}{c}$	(d) $\frac{c}{a}$	
(16) What is the length of latus rectum of the ellipse				
64($(x-3)^2 + 16(y+$	$7)^2 = 1024?$		
(a) 1.8	(b) $\frac{3}{2}$	(c) 0.5	(d) 4	

EQUATION OF TANGENT TO THE ELLIPSE

Equation of tangent to the ellipse at point (x_1, y_1) .

S.No.	EQUATION OF ELLIPSE	EQUATION OF TANGENT
2	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$	$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$ $\frac{xx_1}{b^2} + \frac{yy_1}{a^2} = 1$

OR

1	$b^2x^2 + a^2y^2 = a^2b^2$	$b^2 x x_1 + y y_1 a^2 = a^2 b^2$
2	$a^2x^2 + b^2y^2 = a^2b^2$	$a^2 x x_1 + b^2 y y_1 = a^2 b^2$

Note: The tangents at the vertices and end points of minor axis is parallel to x-axis or y-axis.

Case-1: Major axis is along x-axis:

i) Equation of tangent at (a, 0) and (-a, 0):

$$x = a$$
 and $x = -a$ respectively.

ii) Equation of tangent at (0, b) and (0, -b):

$$y = b$$
 and $y = -b$ respectively.

Case-2: Major axis is along y-axis:

i) Equation of tangent at (0, a) and (0, -a):

$$y = a$$
 and $y = -a$ respectively.

ii) Equation of tangent at (b, 0) and (-b, 0):

$$x = b$$
 and $x = -b$ respectively.

MCQ-11:

What is the equation of tangent to the ellipse $16x^2 + 25y^2 = 400$ at point $(3,\frac{8}{5})$?

(a)
$$6x + 5y - 50 = 0$$

(b)
$$6x + 5y - 16 = 0$$

(c)
$$15x + 5y + 53 = 0$$

(d)
$$2x + 8y + 13 = 0$$

Solution:

$$16x^{2} + 25y^{2} = 400$$
Point $\left(3, \frac{8}{5}\right)$

$$x_1 = 3$$

$$y_1 = 8/c$$

Equation of tangent

$$16xx_1 + 25yy_1 = 400$$

$$16(3)x + 25\left(\frac{8}{5}\right)y = 400$$

$$48x + 40y = 400$$
$$6x + 5y = 50$$

The answer is (a).

ezcercise-4

(1) What is the equation of tangent to the ellipse $9x^2 + 4y^2 = 36$ at (2, -3)?

(a)
$$6x - 8y = 36$$

(b)
$$2x - 3y = 6$$

(c)
$$18x - 12y = 36$$

(d)
$$9x + 4y = 36$$

(2) What is the equation of the tangent drawn at a vertex of the ellipse $16x^2 + 9y^2 = 144?$

(a)
$$y = 4$$

(b)
$$x = 4$$

(c)
$$y = 2$$

(d)
$$x = -2$$

(3) What is the equation of the tangent drawn to a vertex of the ellipse

$$4(x-2)^2 + 9(y-1)^2 = 36?$$

(a)
$$x = -5$$
 (b) $y = -5$

(b)
$$v = -5$$

(c)
$$x = 5$$

(d)
$$y = 5$$

CONDITION OF TANGENCY

S.No	EQ. OF ELLIPSE	EQ. OF ST. LINE	CONDITION OF TANGENCY
1	$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$ or $b^{2}x^{2} + a^{2}y^{2} = a^{2}b^{2}$	y = mx + c	$c^2 = a^2m^2 + b^2$
2	$\frac{x^{2}}{b^{2}} + \frac{y^{2}}{a^{2}} = 1$ or $a^{2}x^{2} + b^{2}y^{2} = a^{2}b^{2}$	y = mx + c	$c^2 = b^2 m^2 + a^2$

MCQ- 12:

 $a^2 = ?$, if the line $y = \sqrt{5} x + 7$ touches the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{4} = 1$$

(a) 25

(b) 9

(c) 49

(d) 16

Solution:

$$y = \sqrt{5} x + 7$$

$$m=\sqrt{5}$$
 , $c=7$

$$\frac{x^2}{a^2} + \frac{y^2}{4} = 1$$

$$b^2 = 4$$

Condition of tangency

$$c^2 = a^2m^2 + b^2$$

$$49 = 5a^2 + 4$$

$$a^2 = 9$$

The answer is (b).

EXERCISE-5

(1) $b^2 = ?$ if the line y = 3x + 10 touches the ellipse $\frac{x^2}{6} + \frac{y^2}{b^2} = 1?$

(a) 46

(b) 64

(c) 32

(d) 82

AUTHOR

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON MATHEMATICS
BY
M. MAQSOOD ALI

