

Chapter 8

PARABOLAS

PARABOLA VERTEX AT ORIGIN

(1) Axis along x-axis, open right:

(i) Equation of parabola

$$y^2 = 4ax$$

- (ii) Focus at (a, 0).
- (iii) Equation of directrix

$$x = -a$$

(2) Axis along x-axis, open left:

(i) Equation of parabola

$$y^2 = -4ax$$

- (ii) Focus at (-a, 0).
- (iii) Equation of directrix

$$x = a$$

(3) Axis along y-axis, open up:

(i) Equation of parabola

$$x^2 = 4ay$$

- (ii) Focus at (0, a).
- (iii) Equation of directrix

$$y = -a$$

(4) Axis along y-axis, open down:

(i) Equation of parabola

$$x^2 = -4ay$$

- (ii) Focus at (0, -a).
- (iii) Equation of directrix

$$y = a$$

Formula:

Length of latus rectum = 4a

MCQ-1:

What is the focus of parabola $x^2 = 12y$?

(c)
$$(0, -3)$$

(d)
$$(-3,0)$$

Solution:

$$x^2 = 12y$$

There are only two terms, so vertex at origin. The power of y is 1, so axis of parabola is along y-axis.

The coefficient of y is positive (i.e. 12) so it is open up.

Standard equation of parabola

$$x^2 = 4ay$$

$$4a = 12$$

$$a = 3$$

Focus at (0, a) = (0,3)

The answer is (a).

MCQ- 2:

What is the focus of parabola $y^2 + 18x = 0$?

(a)
$$(0, \frac{9}{2})$$

(b)
$$\left(0, -\frac{9}{2}\right)$$

(c)
$$(\frac{9}{2}, 0)$$

(b)
$$\left(0, -\frac{9}{2}\right)$$
 (c) $\left(\frac{9}{2}, 0\right)$ (d) $\left(-\frac{9}{2}, 0\right)$

Solution:

$$y^2 + 18x = 0$$
$$y^2 = -18x$$

Vertex at origin, axis of parabola is along x-axis and open left because the coefficient of x is negative (i.e. -18).

Standard equation of parabola

$$y^2 = -4ax$$

$$4a = 18$$

$$a = \frac{9}{2}$$

Focus at (-a, 0) = $(-\frac{9}{2}, 0)$

The answer is (d).

MCQ- 3:

What is the length of latus rectum of parabola $x^2 = -28y$?

- (a) 7
- (b) 28
- (c) 192

Solution:

Standard equation of parabola

$$x^2 = -4ay$$

Length of latus rectum = 4a

$$4a = 28$$

The answer is (b).

exercise-1

- (1) What are the coordinates of focus of the parabola $x^2 = -20y$?
 - (a) (-20,0) (b) (0,-20)
- (c) (-5,0)
- (d) (0, -5)
- (2) What is the length of the latus rectum of the parabola $y^2 = -24x$?
 - (a) 24
- (b) 6
- (c) 4
- (3) What is the equation of the directrix of the parabola $x^2 + 32y = 0$?
 - (a) y = 32
- (b) y = 8
- (c) x = 8
- (d) x = -8
- (4) What is the equation of the directrix of the parabola $x^2 = 4ay$?
 - (a) y a = 0
- (b) x a = 0
- (c) y + a = 0
- (d) x + a = 0
- (5) e is the eccentricity of a parabola. What is the value of e?
 - (a) 0.5
- (b) 1.5
- (c) 0
- (d) 1

PARABOLA VERTEX AT ORIGIN

S.No.	Axis of	Open	Equation	Focus	Directrix
	parabola				
1	x-axis	Right	$y^2 = 4ax$	(a, 0)	x = -a
2	x-axis	Left	$y^2 = -4ax$	(-a, 0)	x = a
3	y-axis	Right	$x^2 = 4ay$	(0,a)	y = -a
4	y-axis	Left	$x^2 = -4ay$	(0,-a)	y = a

PARABOLA VERTEX AT (h, k

S.No.	Axis of	Open	Equation	Focus	Directrix
	parabola)
1	x-axis	Right	$(y-k)^2 = 4a(x-h)$	(a+h,k)	x = -a + h
2	x-axis	Left	$(y-k)^2 = -4a(x-h)$	(-a+h,k)	x = a + h
3	y-axis	Right	$(x-h)^2 = 4a(y-k)$	(h, a + k)	y = -a + k
4	y-axis	Left	$(x-h)^2 = -4a(y-k)$	(h, -a+k)	y = a + k

MCQ-4:

What is the vertex of parabola $y^2 - 4y - 6x - 20 = 0$?

(a) (0, 0)

(b)
$$(-2, -3)$$
 (c) $(-4, 2)$

(d) (2, -3)

Solution:

Vertex at (h, k) = (-4, 2)

The answer is (c).

AUTHOR

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD

ALL BOOKS AND CD ON MATHEMATICS

BY

M. MAQSOOD ALI

FROM WEBSITE

www.mathbunch.com

The answer is (d).

EXERCISE-2

(1) What is the vertex of the parabola $x^2 - 6x - 12y - 51 = 0$? [Hint: Find turning point, putting dy/dx = 0] (a) (5, -3) (b) (-3, 5) (c) (3, -5) (d) (-5, 3)

(2) What is the vertex of the parabola $y^2 + 4y + 4x - 12 = 0$? (a) (-2,4) (b) (4,-2) (c) (2,-4) (d) (-2,-4)

(3) What are the coordinates of the vertex of the parabola $(y+3)^2 = -4(x-7)$?

(a) (-7,3) (b) (-3,7) (c) (7,-3) (d) (-1,-3)(4) What are the coordinates of focus of the parabola $(y-k)^2 = -4a(x-h)$?

(4) What are the coordinates of focus of the parabola $(y-k)^2 = -4a(x-h)^2$ (a) (-a+h,k) (b) (a+h,k) (c) (a+k,h)(d) (-a+h,0)

(5) What are the coordinates of focus of the parabola $(y-2)^2 = 8(x-3)$? (a) (5, 2) (b) (2, 3) (c) (2, 0) (d) (4, 3)

(a) (5, 2) (b) (2, 3) (c) (2, 0) (d) (4, 3)

(6) What are the coordinates of focus of the parabola $(y-5)^2 = -12(x+2)$? (a) (-1,5) (b) (-3,5) (c) (-5,5) (d) (2,-2)

(7) What are the coordinates of focus of the parabola $(x + 6)^2 = 20 (y - 4)$? (a) (-6,5) (b) (-1,4) (c) -6,9) (d) (3,2)

(8) What are the coordinates of focus of the parabola $(x-5)^2 = -8(y-7)$?

(a) (5, 5) (b) (5, 7) (c) (-2,7) (d) (3, 7)

(9) What is the equation of the directrix of the parabola $(x - h)^2 = 4a(y - k)$? (a) x + a = h (b) y + a = k (c) y - a = k (d) y = -a

(10) What is the equation of the directrix of the parabola $(y-k)^2=4a(x-h)$?

(a) x = h + a (b) x = h - a (c) y = k - a (d) y = h + a

(11) What is the equation of the directrix of the parabola

 $(x-h)^2 = -4a(y-k)$?

(a) y = k + a (b) x = h + a (c) y = k - a (d) x = k - a

(12) What is the equation of the directrix of the parabola

$$(y-2)^2 = 16(x-5)?$$

(a)
$$x = 5$$

(b)
$$x = -2$$

(c)
$$x = 1$$

(d)
$$y + 2 = 0$$

(13) What is the equation of the directrix of the parabola

$$(x+7)^2 = -4(y-6)?$$

(a)
$$y = 7$$
 (b) $y = 5$

(b)
$$v = !$$

(c)
$$y = 1$$

(d)
$$y = -8$$

(14) Which is the equation of the directrix of the parabola

$$(x-h)^2 = 4a(y-k)?$$

(a)
$$x + a = h$$

(b)
$$y + a = k$$

(c)
$$y - a = k$$

(d)
$$y = -$$

EQUATION OF PARABOLA

MCQ-7:

What is the equation of parabola vertex at origin and focus (-8 , 0)?

(a)
$$x^2 = -8y$$

(b)
$$y^2 = -8x$$
 (c)

(b)
$$y^2 = -8x$$
 (c) $x^2 = -32y$ (d) $y^2 = -32x$

(d)
$$v^2 = -32$$
:

Solution:

Vertex at origin, focus (-8,0)

since ordinate = 0

∴ axis of parabole is along x-axis.

$$abcissa = -8$$

Negative sign shows that parabola is open left and

$$a = 8$$

The equation of parabola is

$$v^2 = -4a^2$$

$$y^2 = -32x$$

The answer is (d).

AUTHOR

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD ALL BOOKS AND CD ON MATHEMATICS

BY

M. MAQSOOD ALI

FROM WEBSITE

www.mathbunch.com

$$4a = 16$$
$$a = 4$$

Equation of tangent

$$xx_1 = 2a(y + y_1)$$

$$-4x = 8(y+1)$$

$$-x = 2(y+1)$$

$$x + 2y + 2 = 0$$

The answer is (b).

Note: Tangent at the vertex of the parabola is parallel to x-axis (if axis of parabola is along y-axis) or parallel to y-axis (if axis of parabola is along x-axis). Vertex at (h, k):

i) Equation of tangent, axis of of parabola is along x-axis.

$$x = h$$

ii) Equation of tangent, axis of of parabola is along y-axis.

$$y = k$$

EXERCISE-4

(1) What is the equation of tangent of the parabola $y^2 = 32x$ at (3, -5)?

(a)
$$32x - 5y + 36 = 0$$
 (b) $16x + 5y + 48 = 0$

(b)
$$16x + 5y + 48 = 0$$

(c)
$$8x + 5y + 24 = 0$$

(d)
$$32x + 5y + 96 = 0$$

(2) A tangent is drawn to parabola $y^2 = 8x$. What is the equation of tangent at vertex?

(a)
$$y = 0$$

(b)
$$x = 0$$

(c)
$$x = 2$$

(d)
$$y = -2$$

(3) A tangent is drawn at vertex to the parabola $(x-8)^2=12(y-3)$. What is the equation of tangent?

(a)
$$y = 6$$

(b)
$$y = 3$$

(b)
$$y = 3$$
 (c) $y = -3$ (d) $x = 8$

(d)
$$x = 3$$

CONDITION OF TANGENCY

S. NO.	EQ. OF PARABOLA	EQ. OF STRAIGHT LINE	CONDITION OF TANGENCY
i	$y^2 = 4ax$	y = mx + c	c = a/m
ii	$x^2 = 4ay$	y = mx + c	$c = -am^2$

MCQ- 10:

k=?, if the line y=kx-2 is tangent to the parabola $x^2=8y$?

- (a) 1
- (b) 2
- (c) 4
- (d) 8

Solution:

$$a = 2$$

$$y = kx - 2$$

$$m = k , c = -2$$

Condition of tangency

$$c = -am^2$$

$$-2 = -2k^2$$

$$k^2 = 1$$

$$k = \pm 1$$

The answer is (a).

EXERCISE-5

- (1) k = ?, if the line y = 3x + k is tangent of the parabola $y^2 = 36x$?
 - (a) 9
- (b) 8
- (c) 6
- (d) 3

AUTHOR

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD ALL BOOKS AND CD ON MATHEMATICS BY

M. MAQSOOD ALI

FROM WEBSITE

www.mathbunch.com

