

## Chapter 5

## 

## SLOPE AND EQUATION OF THE TANGENT

Slope of the tangent or slope of the curve at $\left(x_{1}, y_{1}\right)=\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}$
MCQ- 1:
What is the slope of the tangent of the curve $y^{2}=3 x^{2}-5$ at the point $(4,2)$ ?
(a) 6
(b) $\frac{1}{6}$
(c) $\frac{3}{2}$
(d) $\frac{2}{3}$

## Solution:



The answer is (a).
MCQ- 2:
What is the point where the tangent to the curve $y=x^{3}+7$ is parallel to $x$-axis?
(a) $(-2,-1)$
(b) $(2,15)$
(c) $(0,7)$
(d) $(1,8)$

Solution:


$$
\begin{aligned}
& \text { The tangent is parallel to } x \text {-axis } \\
& \qquad \begin{aligned}
\frac{d y}{d x} & =0 \\
3 x^{2} & =0 \\
x & =0
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Put } x=0 \text { in equation (1) } \\
& \qquad \begin{array}{r}
y=0+7 \\
y=7
\end{array}
\end{aligned}
$$

## The point is $(0,7)$.

The answer is (c).

## 

(1) What is the equation of the tangent to the curve $y=3-x^{2}$ at point $(1,2)$ ?
(a) $y-2=2(1-x)$
(b) $y-2=-2(1-x)$
(c) $y-2=2(x-1)$
(d) $y-2=-2(x+1)$
(2) What is the equation of normal to the curve $x^{3}-y^{2}=0$ at point $(1,-1)$ ?
(a) $2(y+1)=-3(x+1)$
(b) $3(1-y)=2(x-1)$
(c) $3(y+1)=2(x-1)$
(d) $2(y+1)=3(1-x)$
(3) What is the equation of the normal to the curve $y=\ln (5-x)+5$ at the point where $x=4$ ?
(a) $y=x+1$
(b) $y-5=-1(x-4)$
(c) $y=5(x+4)$
(d) $y-5=\frac{1}{\ln (5-x)}(x-4)$
(4) A tangent is drawn to a curve $x^{2}=8 y-16$ at a point $P$ parallel to $x$-axis. What is the equation of tangent?
(a) $y=2$
(b) $x=2$
(c) $y=8$
(d) $y=4$
(5) A tangent is drawn parallel to $y$-axis to a curve $y^{2}=12 x-36$ at a point. What is the equation of tangent?
(a) $x=12$
(b) $y=3$
(c) $x=3$
(d) $x=-3$
(6) $P$ is a point on the curve $y^{2}=6 x$. What is the equation of normal at $P$ if tangent at $P$ is parallel to $y$-axis?
(a) $x=1$
(b) $y=0$
(c) $x=6$
(d) $x=0$
(7) What is value of $k$ if gradient of the curve $y^{2}=6 k x+1$ at point $(a, 2)$ is 9 ?
(a) 2
(b) 3
(c) 6
(d) $\frac{1}{6}$
(8) $e^{k x}+2 y+k x=0$ is the equation of a curve. What is the value of $k$ if the gradient of the normal at $x=0$ is $-\frac{1}{2}$ ?
(a) -2
(b) 2
(c) 4
(d) $\frac{1}{2}$

## SPEED AND ACCELERATION

A particle covered distance $s$ in time $t$, the speed and magnitude of acceleration are
(i) speed $=v=\frac{d s}{d t}$
(ii) acceleration $=a=\frac{d v}{d t} \quad$ or $\quad a=\frac{d^{2} s}{d t^{2}}$

MCQ- 3:
What is the acceleration of the particle if its distance $s$ at time $t$ is $s=2 \sqrt{t}$ ?
(a) $4 t$
(b) $\frac{1}{2} \sqrt{t}$
(c) $\frac{4}{3} t^{\frac{3}{2}}$
(d) $\frac{1}{\sqrt{t}}$

## Solution:



The answer is (d).

## 

MT MTAQSTOOD 尽TI
ASSISTANT PROFESSOR OF MATHEMATICS


FREE DOWNLOAD
ALL BOOKS AND CD ON MATHEMATICS
BY
M. MAQSOOD ALI

FROM WEBSITE
www.mathbunch.com

## RATE OF CHANGE

i) Rate of change in $y$ w.r.t. $x=\frac{d y}{d x}$
ii) Rate of change in $y$ w.r.t. $x$ at $(x=p)=\left(\frac{d y}{d x}\right)_{x=p}$

MCQ-5:
What is the rate of change in $A$ with respect to t if $A=6 / \sqrt{t}$ ?
(a) $-3 / t^{\frac{3}{2}}$
(b) $3 \sqrt{t}$
(c) $-3 \sqrt{t}$
(d) $3 / 2 t^{\frac{3}{2}}$

Solution:


The answer is (a).
MCQ-6 :
What is the rate of change in $y$ with respect to x at $x=2$, if $y=3 x^{3}-6 x+12$ ?
(a) 36
(b) 42
(c) 12
(d) 30

Solution:

$$
\begin{aligned}
\text { Rate of change in } y \text { w.r.t } x & =\left(\frac{d y}{d x}\right) \\
& =9 x^{2}-6
\end{aligned}
$$

At $x=2$

$$
\left(\frac{d y}{d x}\right)_{x=2}
$$

$$
\begin{gathered}
=9(2)^{2}-6 \\
=30
\end{gathered}
$$

The answer is (d).

## 

(1) The area of a circle at time $t$ second is $A=\frac{1}{16}\left(t^{2}-1\right)^{2}+9$. What is the rate of increasing in area at $t=5 \mathrm{sec}$ ?
(a) 12
(b) -39
(c) 39
(d) 30
(2) $y=5 x^{3}-3 x+9$ is the equation of a curve. What is the rate of change of $y$ with respect to $x$ at $x=2$ ?
(a) 25
(b) 57
(c) 63
(d) 43
(3) $V=24-\sqrt{t}$ unit $^{3}$ is the volume of the ice cream, at time $t$ sec. What is the rate of decreasing in unit ${ }^{3} / \mathrm{sec}$ at $t=4 \mathrm{sec}$ ?
(a) 0.25
(b) 0.4
(c) 22
(d) 6
(4) Some water is boiling in a vessel. The volume of the water at time $t$ is $V=28-t^{3 / 2}$ unit $^{3}$. What is rate of decreasing in unit ${ }^{3} / \mathrm{sec}$ at $t=16 \mathrm{sec}$ ?
(a) -36
(b) 12
(c) 8
(d) 6
(5) An ice cream in the shape of cylinder is melting in such a way that the radius and height are always same. What is the rate of change in volume with respect to radius at $r=2$ ?
(a) $6 \pi$
(b) $12 \pi$
(c) $8 \pi$
(d) None
(6) The volume of a spherical balloon is increasing. What is the rate of change in volume with respect to radius at $r=2$ ?
(a) $2 \pi$
(b) $\pi$
(c) $4 \pi$
(d) $16 \pi$

## SMALL INCREAMENT

Small increament in $y$ (i.e. $\Delta y$ ), when $x$ increases $\Delta x$

$$
\Delta y=\frac{d y}{d x} \cdot \Delta x
$$

MCQ-7 :
$V=\frac{4}{3} \pi r^{3}$ is the volume of a sphere. What is the change in volume, if radius of the sphere increases from 5 to 5.01 .
(a) $501 \pi$
(b) $0.2 \pi$
(c) $\pi$
(d) $\frac{4}{3} \pi$

## Solution:



The answer is (c).

## 众U匠界OR

MT MTAQSTOOD 尽TI
ASSISTANT PROFESSOR OF MATHEMATICS


## FREE DOWNLOAD

ALL BOOKS AND CD ON MATHEMATICS BY
M．MAQSOOD ALI
FROM WEBSITE
www．mathbunch．com

$y=f(x)$ is a curve, shown in the above diagram. The points on the curve where tangent is parallel to x -axis or $f^{\prime}(x)=0$ are called stationary points.

In above diagram the stationary points are at $x_{0}, x_{1}, x_{2}$ and $x_{3}$.
The value of f is relative minimum or relative maximum at $x=x_{0}, x_{1}, x_{2}, x_{3}$.

## Second Derivative Test:

At $x=p$
i) If $f^{\prime \prime}(\mathrm{p})<0$, then
$f$ is relative maximum at $x=p$.
ii) If $f^{\prime \prime}(\mathrm{p})>0$, then
$f$ is relative minimum at $x=p$.
MCQ- 8:
What is the abscissa of stationary point on the curve $f(x)=3 x^{2}+12 x$ ?
(a) -12
(b) 3
(c) 6
(d) -2

Solution:

$$
\begin{aligned}
& \text { For stationary point } \\
& f^{\prime}(x)=0 \\
& 6 x+12=0 \\
& x=-2
\end{aligned}
$$

The answer is (d).

MCQ- 9:
What is the relative minimum value of f if $f(x)=5 x^{2}-2$ ?
(a) 3
(b) -2
(c) 0
(d) 10

Solution:


For stationary point

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
10 x & =0 \\
x & =0
\end{aligned}
$$

Note: Do not use second derivative test, because there is only one value of $x$ that is zero.
Do not need of the process.

$$
\begin{gathered}
f^{\prime \prime}(x)=10 \\
f^{\prime \prime}(0)=10>0 \\
\therefore f \text { is relative minimum at } x=0
\end{gathered}
$$

$f$ is relative minimum at $x=0$
At $x=0$, the value of $f$ is

$$
f(0)=0-2=-2
$$

The answer is (b).
MCQ-10 :
What is the relative maximum value of $f$ if $f(x)=5 x^{2}+10 x$ ?
(a) 10
(b) -15
(c) -5
(d) None

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=10 x+10
\end{aligned}
$$

```
For stationary points
```

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
10 x+10 & =0 \\
x & =-1
\end{aligned}
$$

Note: There is only one value of $x$ (i.e. -1 ), but here is an option (d) None, so use "second derivative test" to check the value of $f$ is relative minimum or maximum at $x=-1$.

$$
\begin{aligned}
f^{\prime \prime}(x) & =10 \\
f^{\prime \prime}(-1) & =10>0
\end{aligned}
$$

## 

Mr MrA@sOOD ATI
ASSISTANT PROFESSOR OF MATHEMATICS


107

## 

(1) What is the $x$-coordinate of the stationary point on the curve

$$
y=\frac{1}{3} x^{3}-x^{2}+x ?
$$

(a) 1
(b) $\frac{1}{2}$
(c) 7
(d) 2.5
(2) What is the $x$-coordinate of minimum point on the curve

$$
y=x^{3}-x^{2}-5 x ?
$$

(a) $\frac{1}{2}$
(b) 3.6
(c) $\frac{5}{3}$
(d) 7
(3) What is the relative maximum point on the curve $y=\frac{1}{3} x^{3}-x^{2}$ ?
(a) $\left(2,-\frac{4}{3}\right)$
(b) $(3,0)$
(c) $(0,0)$
(d) $(-3,-18)$
(4) $k$ is abscissa of relative minimum point on the curve $y=x^{3}-x^{2}+k$. What is the value of $k$ ?
(a) $7 / 3$
(b) $-\frac{2}{3}$
(c) $\frac{2}{3}$
(d) $\frac{1}{3}$

## 

## Mr Mre@siool

ASSISTANT PROFESSOR OF MATHEMATICS


FREE DOWNLOAD
ALL BOOKS AND CD ON MATHEMATICS
BY
M. MAQSOOD ALI

FROM WEBSITE
www.mathbunch.com

