

Chapter 2

STRAIGHT LINES

(a) 8 (b) -9 (c) -4 (d) 6

Solution:

www.mathbunch.com

(6)	The length of thre	e sides of a triangle	e are 8, $\sqrt{64}$ and $\frac{40}{\sqrt{2}}$) = units. 5
	What is the name	e of the triangle ?	•-	-
	(a) isosceles	(b) rightangled	(c) equilateral	(d) scalene
(7)	The length of thre	e sides of a triangle	e are 3,4 and 5 units	
	What is the name	of the triangle ?		
	(a) isosceles	(b) rightangled	(c) equilateral	(d) scalene
(8)	What is the sum o	of the distances of a	point (5,2) from x ·	-axis and y -axis ?
	(a) 9	(b) 3	(c) $\sqrt{29}$	(d) 7
(9)	A point $P(4, x)$ lie	s in the 4 th quadran	t, equidistance fror	n both axes.
	What are the coor	dinates of P.		
	(a) (4,1)	(b) (4 <i>,</i> 4)	(c) (4,—4)	(d) (4,0)
(10)	y = ?, if the distant	ce between the poi	ints (2, <i>y</i>) and (10, 3	B) is 10 units.
	(a) 6	(b) —4	(c) 8	(d) 9
(11)	x = ?, if the distant	ce between the poi	ints (<i>x</i> , 2) and (4, 6)	is $2\sqrt{13}$.
	(a) —3	(b) 4	(c) – 2	(d) 8
		AUTHOR	FREE DO	
	11 2	M. MAQSUC	MATHEI	MATICS
		ASSISTANT	B'	
		PROFESSOR OF MATHEMATICS	FROM W	VEBSITE
			www.mathl	bunch .com
	L		I	

DISTANCE BETWEEN A POINT (x_1, y_1) AND A LINE ax + by + c = 0

$$d = \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$$

MCQ- 3:

What is the distance between the point (3, -5) and the line 3x - 4y + 6 = 0?

INTERNAL DIVISION

Point (x , y) divides the line segment joining the points (x_1 , y_1) and (x_2 , y_2) in the ratio m_1 : m_2 .

$$x = \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}$$
 , $y = \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}$

Shortcut:

Numinator

MCQ- 4:

What is the point divides the line segment joining the points (2,11) and (8,-4) in the ratio 1:2?

(a)
$$(5, 6)$$
 (b) $(4, 6)$ (c) $(4, 7)$ (d) $(5, 7)$
Solution:

The answer is (b).

TO FIND RATIO

(i) When abscissa is given:

$$\frac{m_1}{m_2} = -\frac{x - x_1}{x - x_2}$$

(ii) When ordinate is given:

$$\frac{m_1}{m_2} = -\frac{y - y_1}{y - y_2}$$

MCQ-5 :

What is the ratio in which x-axis divides the join of (-6,4) and (2,-8)?

EXTERNAL DIVISION

Point (x, y) divides the line segment joining the points (x_1, y_1) and (x_2, y_2) .

The answer is (b).

MID POINT

Mid point of the line segment joining the points (x_1, y_1) and (x_2, y_2) .

Mid point :
$$(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$$

MCQ- 7:

What is the mid point of the line segment joining the points (-4, 5) and (10, -13)? (a) (7, 9) (b) (-7, -9) (c) (3, -4) (d) (-3, 4)Solution: (-4, 5) (10, -13) $mid - point: \left(\frac{-4+10}{2}, \frac{5-13}{2}\right)$ $= \left(\frac{6}{2}, \frac{-3}{2}\right)$ = (3, -4)The answer is (c).

MCQ-8 :

(8, -9) is the mid point of a line joining the points A(6, 12) and B. What are the coordinates of B?

(a)
$$(-2, 3/2)$$
 (b) $(1, 21/2)$ (c) $(7, 3/2)$ (d) $(10, -30)$

Solution:

(8, -9) = (x, y)	
$A(6, 12) = (x_1, y_1)$	
 $B(x_2, y_2) = ?$	

€

Let mid-point : (x, y)	
$x = \frac{x_1 + x_2}{2}$	$, y = \frac{y_1 + y_2}{2}$
$2x = x_1 + x_2$, $2y = y_{1+}y_2$
$x_2 = 2x - x_1$, $y_2 = 2y - y_1$

	$x_2 = 2 (8) - 6$	11 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 11	$y_2 = 2(-9) - 12$
ener e	$x_2 = 16 - 6$	y ,	$y_2 = -18 - 12$
	$x_2 = 10$,	$y_2 = -30$

The answer is (d).

(a)

EXERCISE-3

- (1) A point divides a line joining the points P (6, 16) and Q(-4, -4) in the ratio
 2:3. What is the ordinate of the point?
 - (a) 10.5 (b) 2 (c) 40 (d) 8
- (2) A point (a, −5) divides the join of M (3, 5) and N (−3, −8) in the ratio 10: 3.
 What is the value of a?

(a)
$$\frac{3}{5}$$
 (b) -5 (c) $-\frac{21}{13}$ (d) 3

(3) At what point y-axis divides the join of P(−3,1) and Q(5, −7) in the ratio 3 : 5?

(a)
$$(0,-2)$$
 (b) $(0,-4)$ (c) $\left(0,\frac{5}{8}\right)$ (d) $(0,3)$

(4) What is the point at which x-axis divides the join A (1, 5) and B (12, -6) in the ratio 5 : 6?

(0,7) (b)
$$\left(-\frac{15}{11},0\right)$$
 (c) (6,0) (d) (7,0)

- (5) *M* (4, 7) is the mid-point of the line segment joining the points *A*(6, 9) and *B*.What are the coordinates of *B*?
 - (a) (-3, 5) (b) (2, 6) (c) (2, 5) (d) (3, 5)

(6)	In what and(—8	ratio a po ,12)?	int (—1,	9.2) divide	es the line	e joining t	he poin [:]	ts (2, 8)		
	(a)	3:7	(b)	2:1	(c)	1:2	(d)	5:8		
(7)	In what r	atio the p	oint (4,	12) divide	es the joir	n of $A(-6)$	5, −3) ar	nd <i>B</i> (−2,	3)	
	external	ly?								
	(a)	3:-5	(b)	5:-3	(c)	3:5	(d)	5:3		
(8)	In the randing $B(5, -7)$	itio y-axis 7)?	divides	the line se	gment jo	ining the p	points A	(-3, 1) a	and	
	(a)	4:7	(b)	2:3	(c)	1:7	(d)	3:5		
(9)	In the rat	tio x-axis (divides t	he line seg	gment joi	ning the p	oints P(1,5)		
	anu Q(1	1. 12	(b)	E.C	(c)	1.17	(d)	2.4		
	. ,		. ,					\mathbb{N}		
				JTHOF LAQSO ALI SSISTANT DESSOR O THEMATIC	COD	FREE D ALL BOOK MATH M. MAQ FROM www.mat	OWNLO (S AND C EMATIC: BY SOOD A WEBSIT	AD DON S ALI TE com		

CENTROID

A (x_1, y_1) , B (x_2, y_2) and C (x_3, y_3) are the vertices of a

triangle. The coordinates of centroid are

$$(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3})$$

MCQ- 9:

(8, -6) is the centroid of a triangle, whose vertices are A(1, 3), B(12, 6) and C. What are the coordinates of C?

(a)
$$(11, -27)$$
 (b) $(7, 1)$ (c) $(\frac{5}{3}, 1)$ (d) $(-\frac{5}{3}, -5)$
Solution:

$$\begin{array}{c}
(8, -6) = (x, y) \\
A (1, 3) = (x_1, y_1) \\
B (12, 6) = (x_2, y_2)
\end{array}$$

$$\begin{array}{c}
x_3 = 3x - x_1 - x_2 \\
x_3 = 3(8) - 1 - 12 \\
= 11
\end{array}$$

$$\begin{array}{c}
y_3 = 3y - y_1 - y_2 \\
y_3 = 3(-6) - 3 - 6 \\
= -27
\end{array}$$

The answer is (a).

EXERCISE-4

(1) What is the centroid of the triangle whose vertices are (2, 10), (15, -4) and (-5, 12)?

(a) (2, 5) (b)
$$(-3, 9)$$
 (c) $(6, 9)$ (d) $(4, 6)$

- (2) A (2, 6) and B(-1, 5) and (x, y) are the vertices of a triangle whose centroid is (7, 8). What is x?
 - (a) 19 (b) 20 (c) 21 (d) 17

SLOPE OF A LINE

(i) Line passes through the points (x_1, y_1) and (x_2, y_2) :

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

(ii) Line makes an angle θ with positive x –axis:

 $m = tan\theta$

(iii) Equation of straight line ax + by + c = 0:

$$m = -\frac{coefficient of x}{coefficient of y}$$
$$m = -\frac{b}{a}$$

MCQ- 10:

What is the slope of a line passes through the points (3, 15) and (-9, -7)?

The answer is (b).

MCQ-11 :

What is the slope of a line makes an angle 60° with the axis of x?

12

(d)

77	Author	FREE DOWNLOAD
	<u>m. Maqsood</u>	ALL BOOKS AND CD ON
	ALI	MATHEMATICS
	ASSISTANT PROFESSOR OF MATHEMATICS	BY M. MAQSOOD ALI FROM WEBSITE www.mathbunch.com

(6) What is the slope of a line? The line passes through the point (2, 5) and the point of intersection of two lines whose combined equation is $2x^2 - xy - 3y^2 = 0$.

(a) $\frac{5}{2}$ (b) 4 (c) $-\frac{7}{3}$

(7) The slope of a line passes through the origin and the mid-point of the line segment joining the points (3, 6) and (-5, 8).

(a)
$$-\frac{1}{7}$$
 (b) -4 (c) $-\frac{1}{4}$ (d) -7

(8) ABCD is a trapezium. The equation of \overline{AB} is 2x + 8y - 6 = 0. What is the slope of \overline{CD} ?

(a) 4 (b)
$$-\frac{1}{4}$$
 (c) $-\frac{3}{4}$ (d) $\frac{2}{5}$

(9) y-intercept of a line is 3 and x-intercept 5. What is the slope of the line?

(a)
$$\frac{3}{5}$$
 (b) $\frac{3}{5}$ (c) $\frac{5}{3}$ (d) $-\frac{5}{3}$

(10) The angle from the line l to the line x = 0 is 30° . What is the slope of line l?

(a)
$$\frac{\sqrt{3}}{2}$$
 (b) $\frac{1}{\sqrt{3}}$ (c) $\sqrt{3}$ (d) $\frac{1}{2}$

(11) The angle from the line x = 0 to the line l is 60° . What is the slope of line l?

(a)
$$-\frac{1}{\sqrt{3}}$$
 (b) $\frac{1}{\sqrt{3}}$ (c) $\sqrt{3}$ (d) $-\sqrt{3}$

PARALLEL AND PERPANDICULAR LINES

The Lines Are Parallel:

Two lines are parallel if the slopes of the lines are equal.

$$m_1 = m_2$$

The Lines Are Perpendicular:

Two lines are perpendicular if the product of the slopes of the lines is equal to -1.

$$m_1 \cdot m_2 = -1$$

MCQ-13 :

What is the slope of a line parallel to the line joining the points (2, 8) and

(a) -10 (b) 4 (c) 2 (d) 10

Solution:

What is the slope of a line perpendicular to the line 6x - 9y + 8 = 0?

(a)
$$\frac{-2}{3}$$
 (b) $\frac{3}{2}$ (c) $\frac{2}{3}$ (d) $\frac{-3}{2}$

Solution:

$$6x - 9y + 8 = 0$$

The answer is (d).

MCQ- 16:

The slope of a line is 8 which is perpendicular to the line joining the points (2, a)and (-6, 5). What is the value of a?

: the lines are perpendicular $\therefore m_1 \times m_2 = -1$ $-(\frac{5-a}{8}).8 = -1$ a = 4

The answer is (b).

EXERCISE-6

(1) What is the slope of a line parallel to the line 3x + 12y = 7 = 0?

(a) 4 (b)
$$\frac{7}{3}$$
 (c) -4

(2) What is the slope of a line perpendicular to the line joining the points (2, 5) and (7, −3)?

(a)
$$\frac{-5}{2}$$
 (b) $\frac{5}{8}$ (c) $\frac{2}{5}$ (d) $\frac{-8}{5}$

(3) What is the slope of perpendicular bisector of a line segment joining the points (3, 5) and (-5, -17)?

(a)
$$\frac{4}{11}$$
 (b) $\frac{4}{11}$ (c) $\frac{11}{4}$ (d) $\frac{3}{4}$

(4) $l_1: x - y = 0$, $l_2: 5x - y + 7 = 0$ and $l_3: y + 3x + 9 = 0$ form a triangle. The largest interior angle of the triangle is from by the line_ (a) l_{j}

$$l_1$$
 and l_3 (b) l_2 and l_1 (c) l_2 and l_3 (d) None

(5) The equation of a line parallel to a line 4x + 4y + 7 = 0 is 2x + by + c = 0. What is the value of *b*?

(6) Two lines 2x + py + 3 = 0 and 2x + 5y + q = 0 are perpendicular to each other. What is the value of p.

(a)
$$-\frac{5}{4}$$
 (b) $-\frac{4}{5}$ (c) 5 (d) $\frac{5}{4}$

ANGLE BETWEEN THE LINES

(i) Angle from line l_1 to line l_2 :

$$\tan\theta = \frac{m_2 - m_1}{1 + m_1 m_2}$$

(ii) Angle θ makes line l_2 with line l_1 :

$$\tan\theta = \frac{m_2 - m_1}{1 + m_1 m_2}$$

(iii) Angle between the lines: (acute angle):

$$\tan \theta = \pm \frac{m_2 - m_1}{1 + m_1 m_2}$$
 or $\tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right|$

MCQ-17 :

What is the measure of angle from a line with slope 3 to the line with slope 5?

(a)
$$\tan^{-1}(\frac{1}{15})$$
 (b) $\tan^{-1}(\frac{2}{9})$ (c) $\tan^{-1}(\frac{1}{8})$ (d) $\tan^{-1}(\frac{3}{5})$
Solution:

$$m_1 = 3, m_2 = 5$$

$$m_1 = 3, m_2 = 5$$

$$m_1 = 3, m_2 = 5$$

$$\frac{1}{1 + m_1 m_2}$$

$$= \frac{5 - 3}{1 + 5 \times 3} = \frac{2}{16} = \frac{1}{8}$$
 $\theta = \tan^{-1}(\frac{1}{8})$
The answer is (c).
EXERCISE-7
(1) What is the tangent of the angle from line with slope $\frac{1}{3}$ to a line with slope $\frac{5}{3}$?
(a) $\frac{-6}{7}$ (b) $\frac{2}{5}$ (c) $\frac{6}{7}$ (d) $\frac{-2}{5}$
(2) What is the slope between x-axis and the line with slope 1?
(a) 45° (b) 30° (c) 60° (d) 90°

EQUATIONS OF STRAIGHT LINES

Following formulae are used to find the equation of straight lines.

S. No	Conditions	Diagram	Equation	
1	Parallel to x-axis y-intercept= b	b x	y = b	
2	Parallel to y-axis x -intercept= a	a x	x = a	
3	Line passes through the points (x_1, y_1) and (x_2, y_2)	(x ₂ ,y ₂) (x ₁ ,y ₁)	$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$	
4	Slope= m Point (x_1, y_1) lie on the line	(x ₁ ,y ₁)	$y - y_1 = m(x - x_1)$	
5	Slope= m y-intercept= b	b	y = mx + c	
6	x-intercept = a y-intercept = b	b a x	$\frac{x}{a} + \frac{y}{b} = 1$	
7	p=perpendicular distance from origin \propto =Angle of the perpendicular from <i>x</i> -axis	p γ γ α x	$xcos \propto +ysin \propto = p$	

MCQ-18 :

What is the equation of a straight line parallel to x-axis and y-intercept is 6?

(a)
$$x = 6$$
 (b) $x = -6$ (c) $y = 6$ (d) $y = -6$
Solution:

Equation of line y = by = 6

The answer is (c).

MCQ- 19:

What is the equation of a straight line passing through the points (2, 5) and (3, 8)?

(a)
$$x - 3y + 2 = 0$$

(b) $3x - y - 1 = 0$
(c) $2x - y + 6 = 0$
(d) $6x - 2y + 7 = 0$
Solution:

$$(2,5)$$

$$(3,8)$$

$$m = \frac{8-5}{3-2}$$

$$m = \frac{3}{1}$$

$$m = 3$$
Equation of straight line
 $y - y_1 = m(x - x_1)$
 $y - 5 = 3(x - 2)$
 $y - 5 = 3x - 6$
 $3x - y - 1 = 0$

The answer is (b).

Shortcut:

$$m = 3 = \frac{3}{1} = \frac{coeff.ofx}{(-coeff.ofy)}$$

Two terms of the equation are 3x - yThe equation can be identified by these two terms. The answer is (b). MCQ- 20: What is the equation of a straight line with slope $\frac{2}{5}$ and passing through the point (1, 3)? (a) 7x - 3y + 1 = 0(b) 5x - 2y + 6 = 0(c) 3x - 2y + 7 = 0(d) 2x - 5y + 13 = 0Solution: $m = \frac{2}{5} =$ coeff.of x -coeff.of y First two terms are 2x - 5yThe answer is (d). MCQ- 21:

What is the equation of a straight line with slope $\frac{3}{2}$ and passing through the

point $\left(\frac{1}{5}, 2\right)$?

(a) $5x + 2y - 3 = 0$	(b) $2x - 3y + 1 = 0$
(c) $15x - 10y - 17 = 0$	(d) $6x + y + 8 = 0$

Solution:

$$m = \frac{3}{2} = \frac{coefficient \, ofx}{-coefficient \, ofy}$$

First two terms are

3x - 2y

No option.

Check (c) taking 5 common

$$5(3x - 2y - 17/5) = 0$$

The answer is (c).

MCQ-22 :

What is the equation of a straight line with slope 1/3 and passing through the

point (2 , 1)?

(a) x - 3y + 1 = 0(c) 2x + y - 1 = 0 (b) 3x - y + 7 = 0(d) x - 3y + 5 = 0

Solution:

		V
9	AUTHOR	FREE DOWNLOAD
	M. MAQSOOD	ALL BOOKS AND CD ON
	ALI	MATHEMATICS
	ASSISTANT	BY
	PROFESSOR OF	M. MAQSOOD ALI
	MATHEMATICS	FROM WEBSITE
		www.mathbunch .com

MCQ-23 :

What is the equation of a straight line whose x and y intercepts are 3 and 5 respectively?

(a) 3x + 5y - 12 = 0 (b) 5x + 3y - 6 = 0(c) 5x + 3y - 15 = 0 (d) 3x + 5y - 15 = 0Solution: a = 3 , b = 5Equation of straight line $\frac{x}{a} + \frac{y}{b} = 1$ bx + ay - ab = 05x + 3y - 15 = 0The answer is (c). **The Lines Are Parallel:** MCQ- 24: What is the equation of a straight line whose y-intercept is 6 and parallel to the line 2x - 4y + 3 = 0? (a) x - 2y + 12 = 0(b) 2x - y - 6 = 0(c) 2x + y + 12 = 0(d) x + 6y + 2 = 0Solution: Given equation of straight line is 2x - 4y + 3 = 0 $m_1 = -\frac{coeff.of \ x}{coeff.of \ y}$ $m_1 = -\frac{2}{-4}$ $=\frac{1}{2}$

46

$$5x + 3y - \frac{5}{2} = 0$$

Since the lines are parallel, so compare the coefficient of x and y.

The coefficients of x and y of this equation are same as given equation.

The answer is (b).

The Lines Are Perpendicular:

MCQ-26 :

What is the equation of a straight line perpendicular to the line 3x + 6y - 5 = 0and x-intercept is 2?

(b) 2x - y - 4 = 0

(a)
$$6x - 3y + 2 = 0$$

(c) $2x - y + 6 = 0$

Solut

(c)
$$2x - y + 6 = 0$$

(d) $x - 2y + 2 = 0$
Given equation of straight line is
 $3x + 6y - 5 = 0$
 $m_1 = -\frac{coeff.of \ x}{coeff.of \ y}$
 $m_1 = -\frac{3}{6}$
 $= -\frac{1}{2}$
 \therefore the lines are perpendicular.
 $\therefore m_1 \times m_2 = -1$
 $-\frac{1}{2} \times m_2 = -1$
 $m_2 = 2$
 \therefore the point is (2,0)

Equation of straight line $y - y_1 = m_2(x - x_1)$ y - 0 = 2(x - 2) y = 2x - 4 2x - y - 4 = 0or is (b)

The answer is (b).

Shortcut:

First two terms of the equation can be found by the slope

$$m_2 = 2 = \frac{2}{1}$$

i.e. $2x - y$

The answer is (b).

EXERCISE-8

(1) What is the equation of straight line parallel to x-axis and y- intercept8?

(a)
$$x = 8$$
 (b) $y = 8$ (c) $x = -8$ (d) $y = -8$

(2) What is the equation of straight line parallel to y-axis and x- intercept -2?

(a)
$$x = -2$$
 (b) $y = -2$ (c) $x = 2$ (d) $y = 2$

(3) What is the equation of a line passes through the point (0, 6) and does not intersect x-axis at any point.

(a) x = -6 (b) x = 6 (c) y = 6 (d) y = -6(4) What is the equation of a line x-intersect -5 and does not intersect yaxis at any point?

(a) x + y = 5 (b) y = 5x (c) y = -5 (d) x + 5 = 0

(5) What is the equation of a line parallel to the line x + 2y - 3 = 0 and intersects y-axis at any point (0, 9)?

(a)
$$x + 2y = 18$$
 (b) $y = -2x + 9$ (c) $2y = x - 18$ (d) $x = -\frac{1}{2}y + 9$

(6) What is the equation of a line parallel to x-axis and passes through the origin? (a) y = x(b) x = 0(c) y = 0(d) y = -x(7) What is the equation of a line parallel to x-axis and passes though the point (-3, -8)? (a) y + 8 = 0(c) 3x + 8y = 0 (d) y = -3(b) x + 3 = 0(8) What is the equation of a line parallel to x-axis and passes through the point (2, 5)? (c) 2x + 5y = 0 (d) 2x - 5y = 0(a) y - 5 = 0 (b) x - 2 = 0(9) What is the equation of x-axis? (b) x = 0(a) y = x(d) y = 0(c) x = 1(10) What is the equation of y-axis? (a) y = x(b) y = -x(c) x = 0(d) y = 0(11) A line passes through the point, (1, 2) with slope $\frac{1}{2}$. What is the equation of the line? (b) x - 2y + 3 = 0(a) 2x + y - 4 = 0(d) 5x - y - 3 = 0(c) x - 2y - 5 = 0(12) The gradient of a line is -1 and passes through the origin. What is the equation of the line? (a) y = 0(b) x + y = 0 (c) x = 0(d) y = x(13) The slope of a line is $-\frac{2}{3}$ and x-intercept 5. What is the equation of the line? (a) 2x + 3y = 10(b) 3y - 2x = -10(c) 2x + 3y = 15(d) 5x + 3y = 25(14) What is the equation of a line parallel to the line x + y + 1 = 0 and y-intercept 3. (b) x - y = 3 (c) 3x - y = 0 (d) 3y - x = 1(a) x + y = 3

(15) What is the equation of a line passes through the point of intersection of lines x = 0 and y = 2x + 3 and slope is -2? (a) 3y + 2x = 6 (b) y + 2x = 3 (c) y - 2x = 3 (d) 2y + x = 3(16) What is the equation of a line passes through the point of intersection of lines y = 3x and y = -5x and the slope of $\frac{3}{2}$? (a) 3x - 5y = 6 (b) 2x - 3y = 2 (c) 2x + 3y = 5 (d) 3x - 2y = 0(17) What is the equation of a line intersects x-axis at (5, 0) and parallel to y-axis? (d) x - 5 = 0(a) y = 5x(b) y = x + 5(c) y = 5(18) What is the equation of a line parallel to x-axis and passes through point of intersection of two lines whose combined equation is $x^2 - 5xy + 6y^2 = 0?$ (c) y = 0 (d) x - 5 = 0(a) y - 5x = 6(b) y = 6(19) What is the equation of a straight line? The x-intercept 3 and the slope is 2? (a) y = 2x - 3 (b) y = 2x + 3 (c) 3y = 2x - 6 (d) y = 2x - 6(20) The points P and Q lie on x and y axis respectively. The abscissa of P is 3 and ordinate of Q is -2. What is the equation of the line? (a) 3x + 2y = 6 (b) 4x - 3y = 12 (c) 2x - 3y = 6 (d) 3x - 2y = 6(21) What is the equation of a line. The mid point of the portion between the axes is (-3,2)? (a) 2y + 3x = 12 (b) 3y - 2x = 12 (c) 3y - 2x = -12 (d) 2y - 3x = 12(22) The x and y-intercept of a line are 2 and -8 respectively. Which is the equation of the line? (a) y = x - 10 (b) y = 2x - 4 (c) y = 4x - 8 (d) 2y = 3x + 8(23) P divides a line segment joining the points (1, 3) and (-1, 5) in the ratio 1 : 1. What is the equation of \overline{OP} if O is the origin. (a) y = 0(b) x = 0(c) y - 4 = 0(d) x + y = 1

(d) y = x - 5

(24)What is the equation of a line passes through the point (1, 1) and point of intersection of two lines whose combined equation is $2x^2 + 4xy + 2y^2 = 0?$ (a) y = -x + 1 (b) x = 1(c) y = -x(d) y = x

(25) A line with slope -1 is perpendicular bisector of a line segment joining the points P (1, 2) and Q (3, 4). What is its equation?

(a) $x + y = 5$	(b) $x + 2y = 8$
(c) $x + y = 2$	(d) $2x - y = -6$
(26) A line segment joining th	ne points $A(-2, 2)$ and $B(2, -2)$. What is

the equation of the perpendicular bisector of \overline{AB} ?

(a) $y = x + 4$ (b)	y	=	2 <i>x</i>
---------------------	---	---	------------

(d) y = x(c) y = -x

(27) What is the equation of perpendicular bisector of \overline{AB} , where A(5, 0) and B(-5, 0)?

(a) y = x(b) x = 0

(c) y = 0

(28) P(3, 9) and Q(1, 5) are two points. What is the equation of a line bisects \overline{PQ} and parallel to the line 5x - y + 7 = 0?

(b) y = 5x - 3(a) 2y = 5x + 4(c) y = 5x + 4(d) 5y = 4x + 27

(29) A(-3, 1) and B(5, 3) are two points. What is the equation of a line

bisects \overline{AB} and perpendicular to the line 2x - 4y + 7 = 0?

(b) 2x + y = 5(a) 2x + 5y = 12(d) 2x + y = 4

(c)
$$x + 2y = 5$$

AUTHOR

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD

ALL BOOKS AND CD ON MATHEMATICS

BY M. MAQSOOD ALI FROM WEBSITE

www.mathbunch.com