

Chapter 16

TRIGONOMETRIC RATIOS

ABC is a rightangled triangle and $C \hat{A} B=\theta$
perpendicular: $\mathrm{BC}=p$
base: $\mathrm{AB}=b$
hypotenuse: $\mathrm{AC}=h$
The trigonometric ratios are
i) $\sin \theta=\frac{p}{h}$
ii) $\cos \theta=\frac{b}{h}$
iii) $\tan \theta=\frac{p}{b}$

MCQ-1:

(a) $3 \sqrt{3}$
(b) $\sqrt{3}$
(c) 6
(d) $\frac{1}{3 \sqrt{3}}$

Solution:

$\tan \theta=\frac{p}{b}$

$$
\begin{aligned}
\tan 30^{\circ} & =\frac{3}{x} \\
\frac{1}{\sqrt{3}} & =\frac{3}{x} \\
x & =3 \sqrt{3} \mathrm{~cm}
\end{aligned}
$$

The answer is (a).
MCQ-2 :

(a) $12 \sqrt{3}$
(b) $18 \sqrt{3}$
(c) $9 \sqrt{3}$
(d) $\frac{6}{\sqrt{3}}$

Solution:
In this case perpendicular is x (opposite side to the angle 60°).

The answer is (c).

ANGLE OF ELEVATION AND DEPRESSION

T angle of elevation

MCQ-3 :
The angle of depression from the top of a building 20 m high to a car on the ground is 30°. What is the distance between the building and the car?

(a) $10 \sqrt{3} \mathrm{~m}$
(b) 40 m
(c) $20 \sqrt{3} \mathrm{~m}$
(d) $\frac{40}{\sqrt{3}} \mathrm{~m}$

Solution:

$$
\because C \hat{A} B=A \hat{C} D=30^{\circ}
$$

众U匠界OR

MT MTAQSTOOD 尽TI
ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD

ALL BOOKS AND CD ON MATHEMATICS BY
M．MAQSOOD ALI
FROM WEBSITE
www．mathbunch．com
(4) $B C=$?

(a) 5 cm
(b) $\frac{5 \sqrt{3}}{2} \mathrm{~cm}$
(c) 2.5 cm
(d) $5 \sqrt{3} \mathrm{~m}$
(5) A ladder of length 6 m and angle 30° with the ground. What is the height of the top of the ladder from the ground?
(a) $2 \sqrt{3} \mathrm{~m}$
(b) 2 m
(c) $3 \sqrt{3} \mathrm{~m}$
(d) 3 m
(6) A cyclist travels heading east 12 km and then 5 km heading south. How far is he from his initial position?
(a) 10 km
(b) 13 km
(c) $\sqrt{119} \mathrm{~km}$
(d) 18 m
(7) A tower is erected at 16 m from a point on the ground. The angle of elevation of top of tower from the point is 45°. What is the height, in metres, of the tower?
(a) 12.5
(b) $16 \sqrt{2}$
(c) $16 / \sqrt{2}$
(d) 16
(8) The angle of depression from the top of an apartment 70 feet high to the base of a house is 45°. how far is the house from the foot of the apartment?
(a) $35 \sqrt{3} \mathrm{ft}$
(b) 35 ft
(c) 70 ft
(d) 100 ft
(9) A vertical pole is supported by a rope makes an angle 60°. What is the length of the rope?

(a) $3 \sqrt{3} \mathrm{~m}$
(b) 3 m
(c) 6 m
(d) $3 \sqrt{3} / 2 \mathrm{~m}$

LAWS OF SINE

Suppose that α, β and γ are the angles opposite to the sides of lengths a, b and c respectively.

$$
\frac{a}{\sin \alpha}=\frac{b}{\sin \beta}=\frac{c}{\sin \gamma}
$$

so that
i) $\frac{a}{\sin \alpha}=\frac{b}{\sin \beta}$
ii) $\frac{b}{\sin \beta}=\frac{c}{\sin \gamma}$
iii) $\frac{a}{\sin \alpha}=\frac{c}{\sin \gamma}$

Condition:

This law is used when angle and the length of its opposite side are given.

i) $a^{2}=b^{2}+c^{2}-2 \mathrm{bc} \cos \alpha$
ii) $b^{2}=a^{2}+c^{2}-2 a c \cos \beta$
iii) $c^{2}=a^{2}+b^{2}-2 a b \cos \gamma$

Conditions:

This law is used when
i) Two sides and included angle are given.
ii) Three sides are given.

众U匠界OR

MT MTAQSTOOD 尽TI
ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON MATHEMATICS
BY
M．MAQSOOD ALI
FROM WEBSITE
www．mathbunch．com

$$
\begin{gathered}
\theta=180^{0}-150^{\circ} \\
\theta=30^{\circ} \\
\frac{x}{\sin 30^{0}}=\frac{12}{\sin 30^{0}} \\
x=12 \mathrm{~cm}
\end{gathered}
$$

The answer is (c).
MCQ-6 :

(a) $18 \sqrt{2}$
(b) 30
(c) 20
(d) $10 \sqrt{3}$

Solution:
Use law of cosine, because two sides and included angle are given.

$$
\begin{aligned}
x^{2} & =10^{2}+20^{2}-2 \times 10 \times 20 \cos 60^{\circ} \\
& =500-200 \\
& =300 \\
x & =\sqrt{300}
\end{aligned}
$$

$$
=\sqrt{3 \times 100}
$$

$$
=10 \sqrt{3} \mathrm{~cm}
$$

The answer is (d).
MCQ- 7:

(a) 0^{0}
(b) 30^{0}
(c) 45^{0}
(d) 60^{0}

Solution:

Use law of cosine, because three sides are given.

$$
\begin{aligned}
\cos \theta & =\frac{5^{2}+2^{2}-3^{2}}{2 \times 5 \times 2} \\
\cos \theta & =1 \\
\theta & =0^{0}
\end{aligned}
$$

The answer is (a).

(1) $\alpha=$?

(a) $\sin ^{-1}\left(\frac{b}{a} \sin \beta\right)$
(b) $\frac{a}{b} \sin \beta$
(c) $\sin ^{-1}\left(\frac{a}{b \sin \beta}\right)(d) \sin ^{-1}\left(\frac{a}{b} \sin \beta\right)$
(2) $\cos \beta=$?

(a) $\frac{a^{2}+b^{2}+c^{2}}{2 a c}$
(b) $\frac{a^{2}+b^{2}-c^{2}}{2 a c}$
(c) $\frac{a^{2}-b^{2}+c^{2}}{2 a c}$
(d) $\frac{2 a c}{a^{2}+b^{2}-c^{2}}$
(3) Two cars start from the same point make an angle 45°. What is the distance between the cars if they cover distance of 10 km and $5 \sqrt{2} \mathrm{~km}$ respectively?

(a) 8 km
(b) 22 km
(c) 50 km
(d) $5 \sqrt{2} \mathrm{~km}$
(4) two ropes support a pole making angle 75° and 60° with the horizontal at a distance $10 \sqrt{6}$ feet. What is the length of smaller rope?

(a) 15 ft
(b) 30 ft
(c) 35 ft
(d) 20 ft
(5) Two sides of length 10 m and 20 m are joined at and angle 120°. What is the distance between other two ends?

(a) 17 m
(b) $10 \sqrt{7} \mathrm{~m}$
(c) $10 \sqrt{3} \mathrm{~m}$
(d) 22 m
(6) Which is the smallest angle of the triangle $A B C$? $\left(\sin 110^{\circ}=0.9\right)$

(a) 20°
(b) 30°
(c) 60°
(d) 15°
(7) Two boats are tied by two ropes, as shown in the figure. What is the distance between the boats?

(a) 300 m
(b) $10 \sqrt{3} \mathrm{~m}$
(c) 30 m
(d) 25 m
(8) $A \hat{C} B=$?

(a) $\cos ^{-1} 0.25$
(b) $\sin ^{-1} 0.25$
(c) $\sin ^{-1} 0.5$
(d) $\cos ^{-1} 0.5$

AREA OF TRIANGLE

Area of a traingle is denoted by Δ.
There are three cases:
Case-1: Two sides and included angle are given:

1) $\Delta=\frac{1}{2} b c \sin \propto$
2) $\Delta=\frac{1}{2} a c \sin \beta$
3) $\Delta=\frac{1}{2} a b \sin \gamma$

MCQ:
What is the area of the triangle $A B C$?

(a) $48 \mathrm{~cm}^{2}$
(b) $63 \mathrm{~cm}^{2}$
(c) $84 \mathrm{~cm}^{2}$
(d) $36 \mathrm{~cm}^{2}$

Solution:
Two sides and included angle are given.

$$
\begin{aligned}
\Delta & =\frac{1}{2} \cdot 18 \cdot 14 \sin 30^{\circ} \\
& =63 \mathrm{~cm}^{2}
\end{aligned}
$$

The answer is (b).
Case-2: One side and two angles are given:
(1) $\Delta=\frac{a^{2} \sin \beta \sin \gamma}{2 \sin \alpha}$
(2) $\Delta=\frac{b^{2} \sin \alpha \sin \gamma}{2 \sin \beta}$
(3) $\Delta=\frac{c^{2} \sin \alpha \sin \beta}{2 \sin \gamma}$

众U匠界OR

MT MTAQSTOOD 尽TI
ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON MATHEMATICS
BY
M．MAQSOOD ALI
FROM WEBSITE
www．mathbunch．com

MCQ- 9:
What is the area of the triangle $A B C$ of lengths $5 \mathrm{~cm}, 7 \mathrm{~cm}$ and 10 cm ?
(a) $6 \sqrt{31}$
(b) $7 \sqrt{21}$
(c) $9 \sqrt{23}$
(d) $2 \sqrt{61}$

Solution:
Firstly, calculate s, by adding three sides and dividing by 2 .

$$
\begin{aligned}
& s=\frac{5+7+10}{2} \\
& s=11 \mathrm{~cm}
\end{aligned}
$$

Now calculate $s-a, s-b$ and $s-c$ and use formula case-3

The answer is (d).

(1) What is the area of the triangle $A B C$?

(a) $35 \mathrm{~cm}^{2}$
(b) $30 \mathrm{~cm}^{2}$
(c) $20 \mathrm{~cm}^{2}$
(d) $40 \mathrm{~cm}^{2}$
(2) What is the area of the parallelogram $A B C D$?

(a) $60 \mathrm{~cm}^{2}$
(b) $150 \mathrm{~cm}^{2}$
(c) $208 \mathrm{~cm}^{2}$
(d) $120 \mathrm{~cm}^{2}$
(3) What is the area of the triangle $A B C$?

(a) $1 / 2 y z \sin \theta$
(b) $1 / 2 x z \sin \Psi$
(c) $1 / 2 y z \sin \Psi$
(d) $1 / 2 x y \sin \varphi$
(4) The area of the triangle $A B C$ is $60 \mathrm{~cm}^{2}$. What is the length of side $\overline{A C}$?

(a) 16 cm
(b) 20 cm
(c) 10 cm
(d) 32 cm
(5) What is the area of triangle $A B C$?

(a) $24 \mathrm{~cm}^{2}$
(b) $30 \mathrm{~cm}^{2}$
(c) $18 \mathrm{~cm}^{2}$
(d) $576 \mathrm{~cm}^{2}$
(6) What is the area of isosceles triangle $A B C$ such that $A C=B C=12 \mathrm{~cm}$?

(a) $64 \mathrm{~cm}^{2}$
(b) $36 \mathrm{~cm}^{2}$
(c) $24 \mathrm{~cm}^{2}$
(d) $32 \mathrm{~cm}^{2}$
(7) What is the area of equilateral triangle $A B C$ whose length of a side is 8 cm ?

(a) $32 \sqrt{3} \mathrm{~cm}^{2}$
(b) $20 \sqrt{3} \mathrm{~cm}^{2}$
(c) $12 \sqrt{3} \mathrm{~cm}^{2}$
(d) $16 \sqrt{3} \mathrm{~cm}^{2}$
(8) What is the length of an equilateral triangle whose area is $36 \sqrt{3} \mathrm{~cm}^{2}$?
(a) 12 cm
(b) 8 cm
(c) 9 cm
(d) 18 cm
(9) The area of an isosceles triangle $A B C$ is $9 \mathrm{~cm}^{2}$. Given that $A C=B C$. What is the length of side $\overline{B C}$?

(a) 12 cm
(b) 6 cm
(c) 9 cm
(d) 15 cm
(10) What is the length of a side of an equilateral triangle whose area is $36 \sqrt{3} \mathrm{~cm}^{2}$
(a) 18 cm
(b) $15 \sqrt{3} \mathrm{~cm}$
(c) 12 cm
(d) 6 cm

CIRCUM RADIUS

$$
R=\frac{a b c}{4 \Delta}
$$

IN-RADIUS

$r=\frac{\Delta}{s}$

ESCRIBED-RADII

i) $r_{1}=\frac{\Delta}{s-a}$
ii) $r_{2}=\frac{\Delta}{s-b}$
iii) $r_{3}=\frac{\Delta}{s-c}$

Note: All above formulae of radius are in term of Δ (area of triangle).

全 UTrHfrir

Mr. Mreqsoon frr
ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON MATHEMATICS
BY
M. MAQSOOD ALI

FROM WEBSITE
www.mathbunch.com
(7) $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}, \mathrm{AC}=14 \mathrm{~cm}$ and $\triangle \mathrm{ABC}=36 \mathrm{~cm}^{2}$. What is the radius in cm of the circle?

(a) 2.25
(b) 9
(c) 3.6
(d) 7
(8) $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{AC}=5 \mathrm{~cm}$ and $\triangle \mathrm{ABC}=6 \mathrm{~cm}^{2}$. What is the radius in cm of the circle?

(a) 2.5
(b) 1
(c) 2
(d) 3
(9) $A B=12 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}, \mathrm{AC}=14 \mathrm{~cm}$ and $\triangle \mathrm{ABC}=36 \mathrm{~cm}^{2}$. What is the radius in cm of the circle?

(a) 2.25
(b) 9
(c) 3.6
(d) 7
(10) $A B=3 \mathrm{~cm}, B C=4 \mathrm{~cm}, A C=5 \mathrm{~cm}$ and $\triangle A B C=6 \mathrm{~cm}^{2}$. What is the radius in cm of the circle?

(a) 6
(b) 2.5
(c) 1
(d) 2

食UTrifro R

Mr Mre@siool

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD

ALL BOOKS AND CD ON MATHEMATICS
BY
M. MAQSOOD ALI

FROM WEBSITE
www.mathbunch.com

