

Chapter 16

SOLUTIONS OF TRIANGLES

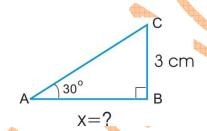
TRIGONOMETRIC RATIOS

ABC is a rightangled triangle and ${\it CAB} = \theta$

perpendicular: BC = p

base: AB = b

hypotenuse: AC = h


The trigonometric ratios are

$$i) \quad \sin\theta = \frac{p}{h}$$

ii)
$$\cos\theta = \frac{b}{h}$$

iii)
$$tan\theta = \frac{p}{b}$$

MCQ- 1:

(a) $3\sqrt{3}$

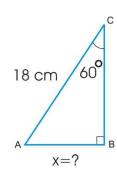
(b) $\sqrt{3}$

(c) 6

(d) $\frac{1}{3\sqrt{3}}$

Solution:

$$\tan\theta = \frac{p}{b}$$


$$\tan 30^{0} = \frac{3}{x}$$

$$\frac{1}{\sqrt{3}} = \frac{3}{x}$$

$$x = 3\sqrt{3} \text{ cm}$$

The answer is (a).

MCQ-2:

(a) $12\sqrt{3}$

(b) $18\sqrt{3}$

(c) $9\sqrt{3}$

(d) $\frac{6}{\sqrt{3}}$

Solution:

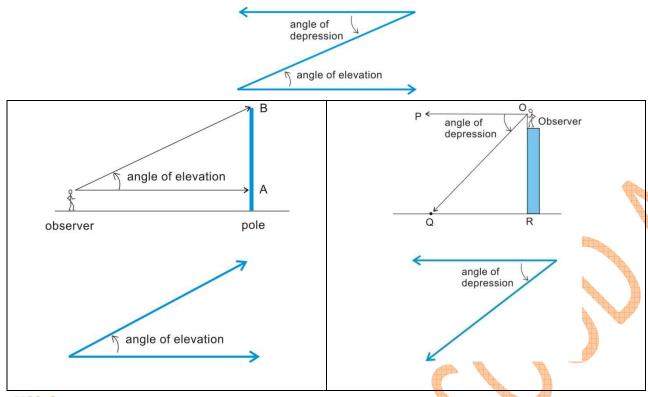
In this case perpendicular is x (opposite side to the angle 60°).

$$p = x = ?$$

$$h = 18$$

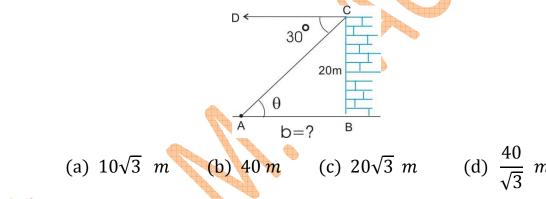
$$\sin\theta = \frac{p}{h}$$

$$\sin 60^0 = \frac{x}{18}$$


$$\sqrt{3} \qquad x$$

$$\frac{\sqrt{3}}{2} = \frac{x}{18}$$

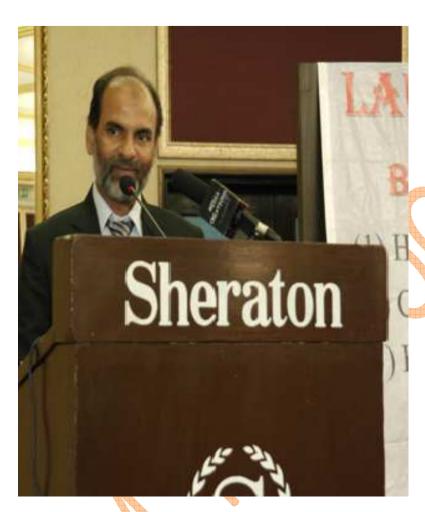
 $x = 9\sqrt{3}$


The answer is (c).

ANGLE OF ELEVATION AND DEPRESSION

MCQ-3:

The angle of depression from the top of a building 20m high to a car on the ground is 30° . What is the distance between the building and the car?


Solution:

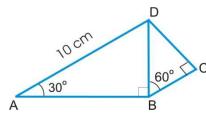
$$\therefore C\hat{A}B = A\hat{C}D = 30^{\circ}$$

$$\therefore \theta = 30^{\circ}$$

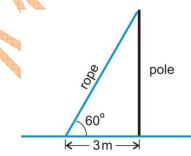
M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD

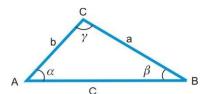

ALL BOOKS AND CD ON MATHEMATICS

BY


M. MAQSOOD ALI

FROM WEBSITE

(4) BC = ?



- (a) 5cm
- (b) $\frac{5\sqrt{3}}{2}$ cm
- (c) 2.5cm
- (d) $5\sqrt{3}$ m
- (5) A ladder of length 6 m and angle 30° with the ground. What is the height of the top of the ladder from the ground?
 - (a) $2\sqrt{3}$ m
- (b) 2 m
- (c) $3\sqrt{3}$ m
- (d) 3 m
- (6) A cyclist travels heading east 12 km and then 5 km heading south. How far is he from his initial position?
 - (a) 10 km
- (b) 13 km
- (c) $\sqrt{119}$ km
- (d) 18 m
- (7) A tower is erected at 16 m from a point on the ground. The angle of elevation of top of tower from the point is 45^o . What is the height, in metres, of the tower?
 - (a) 12.5
- (b) $16\sqrt{2}$
- (c) $16/\sqrt{2}$
- (d) 16
- (8) The angle of depression from the top of an apartment 70 feet high to the base of a house is 45° . how far is the house from the foot of the apartment?
 - (a) $35\sqrt{3}$ ft
- (b) 35 ft
- (c) 70 ft
- (d) 100 ft
- (9) A vertical pole is supported by a rope makes an angle 60° . What is the length of the rope?

- (a) $3\sqrt{3}$ m
- (b) 3 m
- (c) 6 m
- (d) $3\sqrt{3}/2$ m

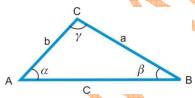
LAWS OF SINE

Suppose that $\, \alpha, \, \beta \,$ and $\, \gamma \,$ are the angles opposite to the sides of lengths $\, a \,$, $\, b \,$ and c respectively.

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma}$$

so that

i)
$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$$


ii)
$$\frac{b}{\sin\beta} = \frac{c}{\sin\gamma}$$

iii)
$$\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma}$$

Condition:

This law is used when angle and the length of its opposite side are given.

LAWS OF COSINE

i)
$$a^2 = b^2 + c^2 - 2bc \cos x$$

ii)
$$b^2 = a^2 + c^2 - 2ac \cos \beta$$

iii)
$$c^2 = a^2 + b^2 - 2ab \cos \gamma$$

Conditions:

This law is used when

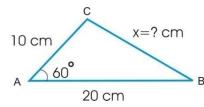
- i) Two sides and included angle are given.
- ii) Three sides are given.

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

ALL BOOKS AND CD ON MATHEMATICS
BY
M. MAQSOOD ALI
FROM WEBSITE

$$\theta = 180^{0} - 150^{o}$$


$$\theta = 30^{0}$$

$$\frac{x}{\sin 30^{0}} = \frac{12}{\sin 30^{0}}$$

$$x = 12 \text{ cm}$$

The answer is (c).

MCQ-6:

- (a) $18\sqrt{2}$
- (b) 30
- (c) 20
- (d) $10\sqrt{3}$

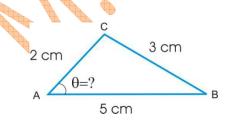
Solution:

Use law of cosine, because two sides and included angle are given.

$$x^{2} = 10^{2} + 20^{2} - 2 \times 10 \times 20 \cos 60^{0}$$

$$= 500 - 200$$

$$= 300$$


$$x = \sqrt{300}$$

$$= \sqrt{3 \times 100}$$

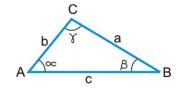
 $= 10 \sqrt{3} \text{ cm}$

The answer is (d).

MCQ- 7:

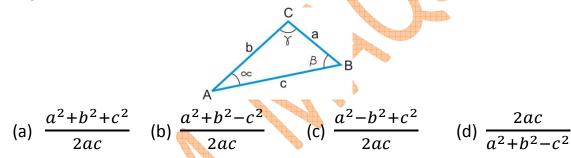
- (a) 0^0
- (b) 30^{0}
- (c) 45°
- (d) 60^{0}

Solution:


Use law of cosine, because three sides are given.

$$cos\theta = \frac{5^2 + 2^2 - 3^2}{2 \times 5 \times 2}$$
$$cos\theta = 1$$
$$\theta = 0^0$$

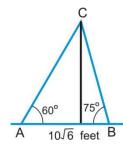
The answer is (a).


HX HR CISH-2

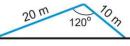
(1) $\alpha = ?$

(a)
$$\sin^{-1}\left(\frac{b}{a}\sin\beta\right)$$
 (b) $\frac{a}{b}\sin\beta$ (c) $\sin^{-1}\left(\frac{a}{b\sin\beta}\right)$ (d) $\sin^{-1}\left(\frac{a}{b}\sin\beta\right)$

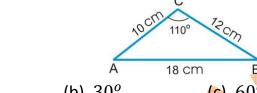
(2) $\cos \beta = ?$

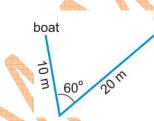


(3) Two cars start from the same point make an angle 45° . What is the distance between the cars if they cover distance of 10 km and $5\sqrt{2}$ km respectively?

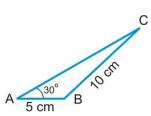


- (a) 8 km
- (b) 22 km
- (c) 50 km
- (d) $5\sqrt{2}$ km


(4) two ropes support a pole making angle 75^o and 60^o with the horizontal at a distance $10\sqrt{6}$ feet. What is the length of smaller rope?


- (a) 15 ft
- (b) 30 ft
- (c) 35 ft
- (d) 20 ft
- (5) Two sides of length 10 m and 20 m are joined at and angle 120° . What is the distance between other two ends?

- (a) 17 m
- (b) $10\sqrt{7} \text{ m}$
- (c) $10\sqrt{3}$ m
- (d) 22 m
- (6) Which is the smallest angle of the triangle ABC? (sin $110^{\circ} = 0.9$)



- (a) 20°
- (b) 30^{o}
- (c) 60°
- (d) 15°
- (7) Two boats are tied by two ropes, as shown in the figure. What is the distance between the boats?

- (a) 300 m
- (b) $10\sqrt{3}$ m
- (c) 30 m
- (d) 25 m

(8) $A\hat{C}B = ?$

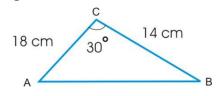
- (a) $cos^{-1}0.25$
- (b) $sin^{-1}0.25$
- (c) $sin^{-1}0.5$
- (d) $cos^{-1}0.5$

AREA OF TRIANGLE

Area of a traingle is denoted by Δ .

There are three cases:

Case-1: Two sides and included angle are given:


1)
$$\Delta = \frac{1}{2} bc \sin \propto$$

2)
$$\Delta = \frac{1}{2} ac sin\beta$$

3)
$$\Delta = \frac{1}{2} ab sin \gamma$$

MCQ-:

What is the area of the triangle ABC?

(a) $48 cm^2$

(b) 63 cm^2

(c) $84 \text{ c}m^2$

(d) 36 cm^2

Solution:

Two sides and included angle are given.

$$\Delta = \frac{1}{2} \cdot 18 \cdot 14 \sin 30^{\circ}$$
$$= 63 \text{ cm}^{2}$$

The answer is (b).

Case-2: One side and two angles are given:

(1)
$$\Delta = \frac{a^2 \sin \beta \sin \gamma}{2 \sin \alpha}$$

(2)
$$\Delta = \frac{b^2 \sin \propto \sin \gamma}{2 \sin \beta}$$

(3)
$$\Delta = \frac{c^2 \sin \propto \sin \beta}{2 \sin \gamma}$$

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

ALL BOOKS AND CD ON MATHEMATICS

BY

M. MAQSOOD ALI

FROM WEBSITE

MCQ- 9:

What is the area of the triangle ABC of lengths 5 cm, 7 cm and 10 cm?

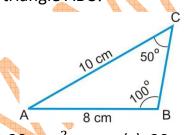
- (a) $6\sqrt{31}$
- (b) $7\sqrt{21}$
- (c) $9\sqrt{23}$
- (d) $2\sqrt{61}$

Solution:

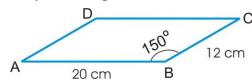
Firstly, calculate s, by adding three sides and dividing by 2.

$$s = \frac{5+7+10}{2}$$
$$s = 11cm$$

Now calculate s-a, s-b and s-c and use formula case-3

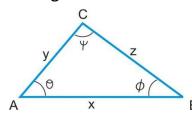

$$\Delta = \sqrt{s(s-a)(s-b)(s-c)}$$

$$\Delta = \sqrt{11.6.4.1}$$
$$= \sqrt{264}$$
$$= 2\sqrt{61} \text{ cm}^2$$

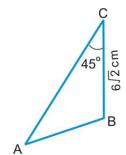

The answer is (d).

IN CHROISES

(1) What is the area of the triangle ABC?

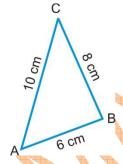


- (a) $35 cm^2$
- (b) 30 cm²
- (c) 20 cm^2
- (d) $40 cm^2$
- (2) What is the area of the parallelogram ABCD?

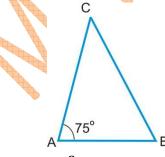


- (a) $60 cm^2$
- (b) 150 cm^2
- (c) 208 cm^2
- (d) $120 cm^2$

What is the area of the triangle ABC?

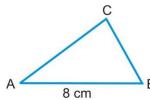


- (a) $1/2 \ yz \sin\theta$ (b) ½ $xz \sin\Psi$
- (c) $\frac{1}{2}$ $yz sin \Psi$
- (d) $\frac{1}{2} xy \sin \varphi$
- (4) The area of the triangle ABC is $60 \ cm^2$. What is the length of side \overline{AC} ?

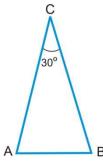


- (a) 16 cm
- (b) 20 cm
- (c) 10 cm
- (d) 32 cm

(5) What is the area of triangle ABC?

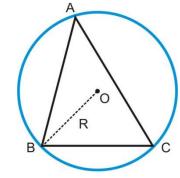


- (a) $24 cm^2$
- (b) $30 cm^2$
- (c) 18 cm²
- (d) 576 cm^2
- (6) What is the area of isosceles triangle ABC such that AC=BC=12 cm?

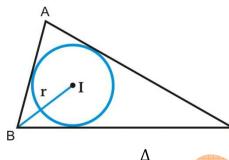


- (a) $64 cm^2$
- (b) $36 cm^2$
- (c) 24 cm^2
- (d) $32 cm^2$

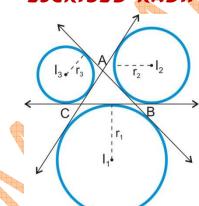
(7) What is the area of equilateral triangle ABC whose length of a side is 8 cm?



- (a) $32\sqrt{3} \ cm^2$
- (b) $20\sqrt{3} \ cm^2$
- (c) $12\sqrt{3} \ cm^2$
- (d) $16\sqrt{3} \ cm^2$
- (8) What is the length of an equilateral triangle whose area is $36\sqrt{3}$ cm²?
 - (a) 12 cm
- (b) 8 cm
- (c) 9 cm
- (d) 18 cm
- (9) The area of an isosceles triangle ABC is 9 cm^2 . Given that AC=BC. What is the length of side \overline{BC} ?


- (a) 12 cm
- (b) 6 cm
- (c) 9 cm
- (d) 15 cm
- (10) What is the length of a side of an equilateral triangle whose area is $36\sqrt{3}~cm^2$
 - (a) 18 cm
- (b) $15\sqrt{3}$ cm
- (c) 12 cm
- (d) 6 cm

CIRCUM RADIUS


 $R = \frac{abc}{4\Delta}$

IN-RADIUS

 $r = \frac{\Delta}{s}$

ESCRIBED-RADII

$$i) r_1 = \frac{\Delta}{s-a}$$

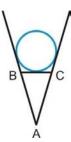
$$ii) \ r_2 = \frac{\Delta}{s-b}$$

$$iii) \ r_3 = \frac{\Delta}{s-c}$$

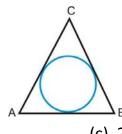
Note: All above formulae of radius are in term of Δ (area of triangle).

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

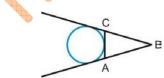


FREE DOWNLOAD
ALL BOOKS AND CD ON MATHEMATICS
BY


M MAQSOOD ALI

FROM WEBSITE

(7) AB=12 cm, BC=6 cm, AC=14 cm and Δ ABC=36 cm^2 . What is the radius in cm of the circle?


- (a) 2.25
- (b) 9
- (c) 3.6
- (d) 7
- (8) AB=3 cm, BC=4 cm, AC=5 cm and Δ ABC=6 cm^2 . What is the radius in cm of the circle?

- (a) 2.5
- (b) 1
- (c) 2
- (d) 3
- (9) AB=12 cm, BC=6 cm, AC=14 cm and Δ ABC=36 cm^2 . What is the radius in cm of the circle?

- (a) 2.25
- (b) 9
- (c) 3.6
- (d) 7
- (10) AB=3 cm, BC=4 cm, AC=5 cm and Δ ABC=6 cm^2 . What is the radius in cm of the circle?

- (a) 6
- (b) 2.5
- (c) 1
- (d) 2

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD

ALL BOOKS AND CD ON MATHEMATICS

BY

M. MAQSOOD ALI

FROM WEBSITE

