

Chapter 13

FUNDAMENTALS OF TRIGONOMETRY

RADIANS AND DEGREE

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD ALL BOOKS AND CD ON MATHEMATICS BY

M. MAQSOOD ALI

FROM WEBSITE

www.mathbunch.com

MCQ- 3:			
45 minutes = ? radians			
(a) $3\pi/2$	(b) 45π	(c) 5π/20	(d) $\pi/240$
Solution:			
i		45′	
!		45 ⁰	'
		$=\frac{10}{60}$	
		3 π	
		$=\frac{1}{4} \times \frac{1}{180}$	
		$=\frac{\pi}{1}$	
The answer is (d)		240	
The answer is (u).			
MUQ- 4:			
300 seconds = ? rad	π	π	π
(a) $\frac{\pi}{1240}$	(b) $\frac{\pi}{2160}$	(c) $\frac{\pi}{540}$	(d) $\frac{\pi}{326}$
Solution:	2100		020
Firstly con	vert 300 secon	ds into degree and th	an into
radians.	Vent Sou secon		
		200//	·-··
		300	
		$=\frac{300^{\circ}}{2600}$	
	Þ	3600 10	
		$=\frac{1}{12}$	
		12 1 π	
		$=$ $\frac{12}{12}$ \times $\frac{180}{180}$ rad	
		$=\frac{\pi}{1}$ rad	
		2160	

The answer is (b).

(1)	$80^0 = $	radians.		
	(a) $\frac{3\pi}{8}$	(b) $\frac{2\pi}{5}$	(c) $\frac{4\pi}{9}$	(d) $\frac{7\pi}{9}$
(2)	$\frac{\pi}{10}$ radians =	degree.		
	(a) 24	(b) 6	(c) 18	(d) 9
(3)	20 minutes = ? c	legree		
	(a) 1/3	(b) 1/180	(c) 2/3	(d) 1/4
(4)	50 minutes = ? r	adians		
	(a) $\frac{\pi}{12}$	(b) $\frac{2\pi}{27}$	(c) π 216	(d) $\frac{5\pi}{18}$
(5)	120 seconds = ?	radians		
	(a) $\frac{\pi}{5400}$	(b) $\frac{2\pi}{3}$	(c) $\frac{2\pi}{1243}$	(d) $\frac{3\pi}{1021}$
¢				

Exercise-1

Relation between s, r and θ

Arc length PQ = Linear distance PQ on the line

MCQ-5 :

What is the distance covered by a car if its wheel, radius 27 cm, turns 100^{o} ?

(a)
$$20 \pi \text{ cm}$$
 (b) $\frac{50\pi}{3} \text{ cm}$ (c) $15 \pi \text{ cm}$ (d) $\frac{14\pi}{3} \text{ cm}$
Solution:
Angle θ must be in radians.

$$s = r \theta$$

$$= 27 \times 100 \times \frac{\pi}{180}$$

$$= 15\pi \text{ cm}$$
The answer is (c).
MCQ-6:
What is the radius of the circle if an arc of length 12 cm subtended an angle 30°
at the centre of the circle?
(a) $2\pi \text{ cm}$ (b) $\frac{72}{\pi} \text{ cm}$ (c) $\frac{12}{\pi} \text{ cm}$ (d) $\frac{6}{\pi} \text{ cm}$
Solution:

S

Solution:

$$S = 12cm, r = ?$$
Convert 30° into radians.

$$\theta = 30^{\circ} = \frac{\pi}{6} rad$$

$$S = r\theta$$

$$12 = r \times \frac{\pi}{6}$$

$$r = \frac{72}{\pi} cm$$
The answer is (b).

MCQ-7:

What is the angle subtended an arc of length 320 cm at the centre of the circle of radius 1.6 metres?

THE SIGNS OF THE VALUES OF TRIGONOMETRIC FUNCTIONS

A circle is divided into four equal parts. Each part is called quadrant.

\propto is basic angle

If \propto is the basic angle, so it is in the first quadrant.

 180^0 and 360^0 are on x-axis .

The functions of sin, cos, and tan at $(180^{\circ} \pm \propto)$ and $(360^{\circ} \pm \propto)$ will not change, only the sign will change according to the quadrant, when the angles $(180^{\circ} \pm \propto)$ and $(360^{\circ} \pm \propto)$ are shifted in first quadrant.

$ heta = (180^{\circ} - \propto)$	$\theta = 180^{\circ} + \infty$
ho ($ heta$) is in the 2 nd quadrant.	ho(heta) is in the third quadrant
$\sin heta$ is positive and $\cos heta$ and $ an heta$ are	$\sin heta$ and $\cos heta$ are negative and $ an heta$ is
negative.	positive.
i) $sin(180^{\circ} - \propto) = sin \propto$	i) $sin(180^0 + \propto) = -sin \propto$
ii) $cos(180^{\circ} - \propto) = -cos \propto$	ii) $\cos(180^{\circ} + \propto) = -\cos \propto$
iii) $tan(180^0 - \propto) = -tan \propto$	iii) $tan (180^0 + \propto) = tan \propto$

$\theta = 360^{\circ} - \alpha$	$\theta = 360^{\circ} + \infty$
ho(heta) is in the fourth quadrant	ho(heta) is in the first quadrant
$\cos\theta \ is$ positive and $\sin\theta$ and $\tan\theta$ are	$\sin heta$, $\cos heta$ and $\tan heta$ are positive.
negative.	
i) $sin(360^{\circ} - \propto) = -sin \propto$	i) $sin(360^0 + \propto) = sin \propto$
ii) $cos(360^{\circ} - \propto) = cos \propto$	ii) $cos(360^0 + \propto) = cos \propto$
iii) $tan(360^0 - \propto) = -tan \propto$	iii) $tan(360^{\circ} + \propto) = tan \propto$

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

ALL BOOKS AND CD ON MATHEMATICS BY

M. MAQSOOD ALI

FROM WEBSITE

www.mathbunch.com

MCQ	- 8:			
sin($(720^o - \theta) = ?$			
	(a) $-\tan\theta$	(b) $-\sin\theta$	(c) $-\cos\theta$	(d) cos <i>θ</i>
Solu	tion:			
		sin (720	$^{0}- heta$)]
		= sin (2 × 3	360 ⁰ -)	
		$= -sin\theta$		
The	answer is (b).			
		<u>exerc</u> i	<u>(SE-4</u>	
(1)	$\sin(180^0-\theta)\cos(2\theta)$	$180^{0} + \theta$) tan(360°	$(\theta - \theta) = ?$	
	(a) $sin^2\theta$	(b) $cos^2\theta$	(c) sin θ cos θ	(d) – sin $\theta \cos \theta$
(2)	$\sec(180^0 + \theta)\cos(\theta)$	$180^{0} - \theta) = ?$		
	(a) tan θ	(b) —cot θ	(c) —tan θ	(d) 1
(3)	$\sin(90^0 + \theta) \tan(2^0)$	$70^{0} + \theta) = ?$		
	(a) $\frac{\sin\theta}{\cos^2\theta}$	(b) $\frac{-\cos^2\theta}{\sin\theta}$	(c) sin $\theta \cos^2 \theta$	(d) $-\sin^2\theta\cos\theta$
(4)	$sin(180^{\circ} + \theta) cos(2)$	$(270^{\circ} + \theta) = ?$		
()	(a) $\sin^2 \theta$	(b) $\cos^2 \theta$	(c) sinθ cosθ	(d) $-\sin^2\theta$
(5)	$cosec(270^{\circ} + \theta)$ ta	$n(90^0 + \theta) = ?$		
	(a) sin²θ	(b) –sec θ	(c) cosec θ	(d) cot θ

VALUES OF TRIGONOMETRIC FUNCTIONS

(SHIFTING THE ANGLE IN FIRST QUADRANT)

θ : <i>in</i> 2 nd quadrant	θ : in 3 rd quadrant	heta: in 4 th quadrant
$\alpha = 180^{\circ} - \theta$	$lpha = heta - 180^{\circ}$	$\alpha = 360^0 - \theta$
$180^0 - 120^0 = 60^0$	$210^{\circ} - 180^{\circ} = 30^{\circ}$	$360^0 - 300^0 = 60^0$
$180^0 - 135^0 = 45^0$	$225^{0} - 180^{0} = 45^{0}$	$360^{0} - 315^{0} = 45^{0}$
$180^0 - 150^0 = 30^0$	$240^{0} - 180^{0} = 60^{0}$	$360^0 - 330^0 = 30^0$

Explanation:

Firstly write of the signs (+ or -) of the value according to the quadrant, and than shift the angle in 1st quadrant from any other quadrant.

For example

i) $cos210^{\circ} = -cos(210^{\circ} - 180^{\circ}) = -cos30^{\circ} = -\frac{\sqrt{3}}{2}$

ii)
$$\cos 330^\circ = \cos(360^\circ - 330^\circ) = \cos 30^\circ = \frac{\sqrt{3}}{2}$$

iii)
$$cos120^{0} = -cos(180^{0} - 120^{0}) = -cos60^{0} = -\frac{1}{2}$$

iv)
$$sin240^{\circ} = -sin(240^{\circ} - 180^{\circ}) = -sin60^{\circ} = -\frac{\sqrt{3}}{2}$$

v)
$$tan 150^{\circ} = -tan (180^{\circ} - 150^{\circ}) = -tan 30^{\circ} = -\frac{1}{\sqrt{3}}$$

FOR NEGATIVE ANGLES

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD ALL BOOKS AND CD ON MATHEMATICS BY M. MAQSOOD ALI FROM WEBSITE WWW.mathbunch.com

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD ALL BOOKS AND CD ON MATHEMATICS BY M. MAQSOOD ALI FROM WEBSITE WWW.mathbunch.com

MCQ-12: $sin\frac{\theta}{2} = ?$ if $sin\theta = \frac{3}{5}$, $\rho(\theta)$ is in the second quadrant. (a) $-\frac{3}{\sqrt{5}}$ (b) $\frac{4}{\sqrt{10}}$ (c) $\frac{4}{5}$ (d) $\frac{3}{\sqrt{10}}$

Solution:

$$=\frac{3}{\sqrt{10}}$$

The answer is (d).

<u>Exercise-6</u>

(1)
$$\sin \theta = -\frac{1}{5} \operatorname{and} \rho(\theta)$$
 is in the 4th quadrant. What is the value of $\tan \theta$?
(a) $\frac{1}{2\sqrt{6}}$ (b) $-\frac{1}{2\sqrt{6}}$ (c) $-\frac{1}{\sqrt{26}}$ (d) $\frac{1}{\sqrt{26}}$
(2) $\tan \theta = \frac{3}{2} \operatorname{and} \rho(\theta)$ is in the 3rd quadrant. What is the value of $\cos \theta$?
(a) $\frac{-3}{\sqrt{5}}$ (b) $\frac{-2}{\sqrt{5}}$ (c) $\frac{2}{\sqrt{13}}$ (d) $\frac{-2}{\sqrt{13}}$
(3) $\cos \theta = \frac{-2}{3}$ and $\rho(\theta)$ is in the 2nd quadrant. What is the value of $\sin \theta$?
(a) $\frac{\sqrt{5}}{3}$ (b) $\frac{-\sqrt{5}}{3}$ (c) $\frac{\sqrt{13}}{3}$ (d) $\frac{2}{\sqrt{13}}$
(4) Given that $\cos \theta = \frac{-2}{7}$ and $\tan \theta = \frac{-3\sqrt{5}}{2}$, $\rho(\theta)$ is in the 2nd quadrant, what is the value of $\sin \theta$?
(a) $\frac{7}{3\sqrt{5}}$ (b) $\frac{3\sqrt{5}}{7}$ (c) $\frac{-3\sqrt{5}}{7}$ (d) $\frac{5}{\sqrt{7}}$
(5) Given that $\sin \theta = \frac{-3}{5}$ and $\rho(\theta)$ is in the 4th quadrant, what is the value of $\cot \theta$?
(a) $\frac{-2}{\sqrt{6}}$ (b) $\frac{-\sqrt{34}}{3}$ (c) $\frac{-4}{5}$ (d) $\frac{-4}{3}$

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD

ALL BOOKS AND CD ON MATHEMATICS

BY

M. MAQSOOD ALI

FROM WEBSITE

www.mathbunch.com