

PERMUTATION AND COMBINATION

COMBINATION		F	PERMUT	ATION		
A combination is a "unordered	A permutation is an "ordered					
selection" of r objects from n different	arra	arrangement" of r objects from n				
objects.	ditte	lifferent objects.				
Symbol:	Sym	bol:				
The number of combination of <i>n</i>	The number of permutation of <i>n</i>					
different objects taken r at a time is	different objects taken r at a time is			ime is		
denoted by	denoted by					
${}^{n}C_{r}$	$^{n}P_{r}$					
Formula:	Formula:					
				-		
$n_{C} - \underline{n!}$			$nP_{n} = -$	<i>n</i> !		
$C_r = (n-r)!r!$			·- ' (n	(-r)!		
Explanation:	Exp	anatior	1:			
ABCD are letters. The following four	The combination of four letters ABCD			rs ABCD		
ways in which 3 letters can be selected	taken 3 at a time is given below.					
from the letters ABCD.	{A,B,C}, {A,B,D}, {A,C,D}, {B,C,D}				B,C,D}	
	Each combination (set) has following six					
	different arrangements.					
	{A,B,C} , {A,B,D} , {A,C,D} , {B,C,D}			, {B,C,D}		
In other words these are four sets, as	(1)	ABC	ABD	ACD	BCD	
given below.	(2)	ACB	ADB	ADC	BDC	
{A,B,C}, {A,B,D}, {A,C,D}, {B,C,D}	(3)	BAC	BAD	CAD	CBD	
	(4)	BCA	BDA	CDA	BDB	
Number of sets= 4	(5)	CAB	DAB	DAC	DBC	
	(6)	CBA	DBA	DCA	DCB	
	Total arrangements=24					
Using Formula:	Using Formula:					
Total letters $= n = 4$	Total letters $= n = 4$					
Selected letters= $r = 3$	Selected letters= $r = 3$					
${}^{4}C_{3} = \frac{4!}{(4-3)!3!} = 4$	${}^{4}P_{3} = \frac{4!}{(4-3)!} = 24$					

FORMULAE

COMBINATION	PERMUTATION
i) Elements can not be repeated $({}^{n}C_{r})$:	i) Elements can not be repeated $({}^{n}P_{r})$:
Example:	Example:
In how many ways three person can	In how many ways a president, a vice
choose from 10 members.	president and a secretary can choose
Solution:	from 10 members. 🛛 🔒
No. of ways = ${}^{10}C_3 = 120$	Solutions:
	No. of ways = ${}^{10}P_3 = 720$
ii) Elements may be repeated $({}^{n+r-1}\mathcal{C}_r)$:	ii) Elements may be repeated (n^r) :
Example:	Example:
A man has three types of cold drink A,B	How many words of two letters out of
and C in his refrigerator. In how many	three letters A, B and C be formed. The
ways he can serve the type of cold drink	letters can be repeated.
of his two guest. If the guest can get	Solution:
same type of cold drinks.	No. of words = $3^2 = 9$
Solution:	
No. of ways = ${}^{3+2-1}C_2 = 6$	

PERMUTATION

LETTERS AND WORDS

The answer is (d).

MCQ-3 :

How many words can be formed out of the letters of the word DEMOLY, begin with M?

MCQ-4 :

How many words can be formed of the letters of the word REASON such that vowels come together?

AUTHOR

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD ALL BOOKS AND CD ON MATHEMATICS

BY

M. MAQSOOD ALI

FROM WEBSITE

www.mathbunch.com

116

MCQ-6 :

How many words can be formed using the letters of the word MATHEMATICA, begin with A?

(a) 12 (b) 2! (c) 6 (d) 8

DIGITS AND NUMBERS (DIGIT NOT REPEATED)

MCQ- 7:

three digits, such that none of the digit is repeated in any number?

(a) 120 (b) 72 (c) 36 (d) 180

Solution:

The answer is (c).

AUTHOR

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD ALL BOOKS AND CD ON MATHEMATICS BY

M. MAQSOOD ALI

FROM WEBSITE

www.mathbunch.com

DIGIT CAN BE REPEATED

MCQ- 11:

Given that 2, 3, 4, 5, 6 are five digits. How many natural numbers can be formed of three digits, such that the digits may be repeated?

The box is repeating not balls. (base=No. of boxes)

 $= 3^5$ = 243

The answer is (c).

MCQ-13 :

Given that 0, 2, 5, 6, 7 are five digits. How many natural numbers of three digits can be formed, the digits can be repeated?

(a) 60 (b) 72 (c) 80 (d) 100 Solution: Total digits = 5 No. of digits in required natural number = 3 Note: The natural numbers of three digits whose first digit is zero is a two digit

natural number not three

Total natural numbers of three digits and two digits $= 5^3$

Note: For two digits numbers:

Zero is fixed at first place. So

 $0 \cdot \cdot$ Total remaining digits again 5, digits can be repeated.

Remaining selected digits = 3 - 1 = 2

Total natural numbers of two digits (three digits numbers whose first digit is zero) = 5^2

Total natural numbers of three digits = $5^3 - 5^2$

= 100

The answer is (d).

Shortcut:

0, 1	, 2, 3, ··· , <i>n</i>			
	Total natural r	numbers o	of <i>r</i> digits=	$= n^r - n^{r-1}$
				•
Total	natural numbers of	f three dig	gits $= 5^3$ -	- 5 ²
			= 100	
The answer is (d).			
		ERCI	<u> SE-2</u>	
(1) How many	natural numbers o	of 3 digit c	an be forr	ned using the digit 2,5,
(a) 3	(b) 6		(c) 9	(d) 12
(2) How many	natural numbers o	of 2 di <mark>gi</mark> ts	can be for	med using the digits
1,2,3,4,5,6,	7? The digits are no	ot repeate	ed.	
(a) 28	(b) 21		(c) 14	(d) 42
(3) How many	natural numbers o	of 2 digits	<mark>c</mark> an be for	med out of the digits
2,3,4,5,6?	The digits can be re	epeated.		
(a) 10	(b) 20		(c) 32	(d) 25
•	All Mis	SCELLA	NEOUS	
MCQ-14 :	$\mathcal{M}_{\mathcal{N}}$			
Seven teams ar	e playing matches i	n a tourna	ament. In	how many ways can th
three teams sta	nd on the stands fo	or 1^{st} , 2^{nd} a	and 3 rd pri	zes?
(a) 120	(b) 210	(c) 8	30	(d) 72
Solution:				
		Total tea	ims= 7	
	<u> </u>	umber of	prizes= 3	
	Number	of ways =	$^{7}P_{3}$	
		=	= 210	
The answer is (b	ວ).			

AUTHOR

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD ALL BOOKS AND CD ON MATHEMATICS BY M. MAQSOOD ALI FROM WEBSITE

www.mathbunch.com

COMBINATION

MCQ-15 :

There are three same prizes and seven teams playing in a tournament. In how many ways can three teams get these prizes?

The answer is (c).

MCQ-18 :

In how many ways can a committee of 3 members including at least 2 women be formed from 4 men and 3 women?

(a) 12 (b) 13 (c) 8 (d) 16 Solution:

No. of ways =
$${}^{4}C_{1}$$
. ${}^{3}C_{2}$ + ${}^{4}C_{0}$. ${}^{3}C_{3}$
= 4.3 + 1.1
= 13

The answer is (b).

EXERCISE-4

- (1) In how many ways r object can be selected out of n unlike objects?
 - (a) n! (n-r)! (b) $\frac{n!r!}{(n-r)!}$ (c) $\frac{n!}{(n-r)!}$ (d) $\frac{n!}{r!(n-r)!}$
- (2) In how many ways 2 digits can be selected out of the digits 1,2,3,4,5,6,7?
 (a) 12
 (b) 21
 (c) 42
 (d) 48
- (3) In how many ways can 2 men and 1 woman can be chosen out of 4 men and 3 women?
 - (a) 6 (b) 12 (c) 18 (d) 36
- (4) In how many ways a cricket eleven can be selected two players?
 (a) 55
 (b) 110
 (c) 84
 (d) 22
- (5) In how many ways 10 members of a committee can choose 3 members?
 (a) 240
 (b) 720
 (c) 120
 (d) 60

CIRCULAR PERMUTATION

ARRANGEMENT IN ROW:

Number of arrangement of three letters A, B, C in row=3!=6

List of arrangements:

ABC, CAB, BCA, ACB, CBA, BAC

CIRCULAR ARRANGEMENT:

CIRCULAR ARRANG	EMENT:						
Compare the row a	nd circular a	arrangeme	ent.				
Row arrangement:	ABC	CAB	BCA	ACB	CBA	BAC	
Circular arrangeme	nt:						
A, B, C are three obj	jects and 1,	2, 3 are th	ne positions	s of the obj	jects. 🧹		
ABC	CAB	BCA	ACB	CBA	BAC		•
$B \xrightarrow{A} C$	A $2 \rightarrow 3$ B B	C 2 3A	C 2 3 B B	B 2 3 A	$A \xrightarrow{B} \\ 2 \xrightarrow{3} 3$		
<	ABC	\longrightarrow	<	ACB	>	•	
Fire	st arrangem	ent	Sec	cond arran	gement		

Note:

i) In circular arrangement starting from the same object (in above example rotation is start from object A), it does not depend on the position (1, 2, 3) of the object.

ii) Clockwise and anticlockwise are not same in circular arrangements.

Method for circular permutation:

- i) A, B, C are three objects.
- ii) Fix one object (i.e. A).
- iii) Remaining elements = 3 1

- Two arrangements
- iv) No. of circular arrangements = (3 1)!

= 2! = 2

Note: In circular permutation fix one object from the given objects,

Formula:

Total objects = n

Number of circular arrangements = (n - 1)!

MCQ- 19:

In how many ways can seven beads of different colors be arranged on a table?

The answer is (a).

EXERCISE-5

(1) In how many ways seven beads of different colors can be arranged in a circle on a table?

(a) 6! (b)
$$\frac{6!}{2}$$
 (c) 7! (d) $\frac{7!}{2}$

(2) In how many ways 5 men and 3 women can be seated on a round table?

(a) 8! (b)
$$\frac{7!}{2}$$
 (c) 7! (d) 6

(3) In how many ways 7 persons can be seated at a round table if 4 particular persons must be seated next to each other.

(a) 6! 4! (b) 3! 4! (c)
$$\frac{6!}{4!}$$
 (d) $\frac{3!}{4!}$

(4) In how many ways 4 boys and 3 girls can be seated at a round table, if one particular boy and a particular girl must be next to each other.

(a) 7! 2! (b)
$$\frac{5! 2!}{2}$$
 (c) 2! 5! (d) 2! 6!

- (5) In how many ways 2 ladies and 5 gents can be seated at a around table if the ladies must not be seated together?
 - (a) 6! 2! (b) 7! 2! 5! (c) $\frac{6!}{2!}$ (d) 6! 2! 5!
- (6) In how many ways 2 red, 3 blue and 1 green bulbs can be arranged in a circle?

(a)
$$\frac{6!}{2! \, 3!}$$
 (b) $\frac{5!}{2! \, 3!}$ (c) $\frac{5!}{2.2! \, 3!}$ (d) $\frac{6!}{2.2! \, 3!}$

CIRCULAR PERMUTATION FOR NECKLACE

For a necklace clockwise and anticlockwise arrangements are same, because if clockwise arrangement is the front of the necklace than anticlockwise arrangement is the back of the necklace, so it is a one necklace not two, as shown in the diagram.

The answer is (b).

<u>Exercise-6</u>

(1) In how many ways seven beads of different colors can be threaded to make a breclet?

(a)
$$\frac{7!}{2}$$
 (b) 7! (c) 7! (d) $\frac{6!}{2}$

(2) In how many ways 3 beads of blue colors and 4 beads of different colors be threaded to make a necklace?

(a)
$$\frac{6!}{2.3!}$$
 (b) $\frac{4!}{3!}$ (c) $\frac{4!}{2.3!}$ (d) $\frac{2.4!}{3!}$

(3) In how many ways 3beads of blue color and 4 beads of different colors (green, red, white, black) be threaded to make a necklace if red and green beads must next to each other.

(a)
$$\frac{6!}{2!}$$
 (b) $\frac{7!2!}{2.3!}$ (c) $\frac{6!2!}{2.3!}$ (d) $\frac{5!2!}{2.3!}$

DIVISION INTO SECTIOINS OR PARCELS

The number of ways m things is divided into two groups containing r_1 and r_2 things respectively.

Case-1: $r_1 \neq r_2$

The number of ways m things can be divided into two groups containing r_1 and r_2 things respectively.

$$=\frac{m!}{r_1! r_2!}$$

In general:

The number of ways *m* different things be divided into *n* bundles of $r_1, r_2, ..., r_n$ things, if $r_1 \neq r_2 \neq ... \neq r_n$

$$=\frac{m!}{r_1! r_2! \dots r_n!}$$

Case-2:
$$r_1 = r_2 = r$$

The number of ways =
$$\frac{m!}{r!r!2!} = \frac{m!}{(r!)^2 2}$$

In general:

The number of ways *m* different things be divided into n bundles of $r_1, r_2, ..., r_n$ things, if $r_1 = r_2 = ... = r_n = r$

$$= \frac{m!}{n! \ (r!)^n}$$

Case-3:

The number of ways m different things be divided into n bundles of $r_1, r_2, ..., r_n$ things and to be handed over to n persons, if

$$r_1 = r_2 = ... = r_n = r$$
, then

The number of ways
$$=\frac{m!}{(r!)^n}$$

MCQ- 21:

In how many ways 12 different things be divided into two bundles of 3 and 9 things?

In how many ways 15 different books can be divided among five persons?

or

In how many ways 15 different books can be divided into five bundles and then to be handed over to five five persons A,B,C,D and E?

EXERCISE-7

(1) In how many ways can 16 different thing be divided into 3 packets of 4,5 and 7 things?

(a)
$$\frac{4!5!7!}{16!}$$
 (b) $\frac{16!}{9!}$ (c) $\frac{16!}{3!4!5!7!}$ (d) $\frac{16!}{4!5!7!}$

(2) In how many ways can m different things be divided into bundles of

$$\begin{array}{c} r_1, r_2, \dots r_n \text{ things if } r_1 = r_2 = \dots = r_n = r? \\ \text{(a) } \frac{m!}{(r!)^2} \qquad \text{(b) } \frac{n!}{m! \ (r!)^n} \qquad \text{(c) } \frac{m!}{n! \ (r!)^n} \qquad \text{(d) } \frac{m!}{(n!)^r} \end{array}$$

(3) In how many ways 4 equal packets are to be formed from the given 12 different things?

(a)
$$\frac{12!}{(3!)^4}$$
 (b) 12! 3! (c) $\frac{12!}{4!(3!)^4}$ (d) $\frac{12!}{3!(4!)^3}$

(4) In how many ways 12 different things be divided equally into 2 persons?

(a)
$$\frac{12!}{(6!)^2}$$
 (b) $\frac{12!}{2 \times 6!}$ (c) $\frac{12!}{2 \times (6!)^2}$ (d) $\frac{12!}{2 \times 2!}$

(5) In how many ways can 8 persons be aboarded equally into two buses?

(a)
$$\frac{8!}{2(4!)^2}$$
 (b) $\frac{8!}{(4!)^2}$ (c) $\frac{8!}{(4!)^2}$ (d) $\frac{8!}{4!(2!)^2}$

AUTHOR

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD ALL BOOKS AND CD ON MATHEMATICS BY

M. MAQSOOD ALL

FROM WEBSITE

www.mathbunch.com

137