

Chapter 3 QUADRATIC AND CUBIC EQUATIONS

ROOTS OF A QUADRATIC EQUATION

The value of x in a quadratic equation $ax^2 + bx + c = 0$ is called the roots of the equation.

The answer is (d).

Case-2: Coefficient of x^2 is not equal to 1: MCQ-2:

What are the roots of the equation $4x^2 - 13x + 10 = 0$?

(a) 5,
$$\frac{3}{2}$$
 (b) 2, $\frac{5}{4}$ (c) 2, -4 (d) $\frac{1}{2}$, $\frac{7}{4}$

Solution:

Long Method: $4x^2 - 13x + 10 = 0$ $4x^2 - 8x - 5x + 10 = 0$ 4x(x - 2) - 5(x - 2) = 0(x-2)(4x-5)=0x - 2 = 0 or 4x - 5 = 0Either x = 2 , $x = \frac{5}{4}$ The answer is (b). Shortcut: $4x^2 - 13x + 10 = 0$ Break middle term -13x-8, -5Change the sign and dividing by the coefficient of x^2 (i.e. 4) to get the roots x = 8/4 , x = 5/4€ x = 2 , x = 5/4

The answer is (b).

FACTOR OF A QUADRATIC EXPRESSION

MCQ-3:

What are the factors of the expression $x^2 + 5x - 14$? (a) (x-2)(x+7)(b) (x-3)(x+6)(c) (x-6)(x+8)(d) (x-1)(x+6)Solution: $x^2 + 5x - 14 = 0$ Break middle term 5x7,-2 Change the signs and get the roots x = -7, 2Subtract both the roots from *x* and multiply them (x-2)(x-(-7))(x-2)(x+7)are the factors. The answer is (a). **MCQ-3:** What are the factors of the expression $4x^2 - 13x + 10 = 0$? (a) (x-2)(4x-5)(b) (x-1)(2x-4)(c) (4x-3)(x-6)(d) (x-2)(4x-5)Solution: The roots of the equation $4x^2 - 13x + 10 = 0$ are x = 2 and x = 5/4(see example 2) 2 , 5/4 Subtract both roots from *x* and multiply them (x - 2)(x - 5/4)

Multiply second factor by 4 (x - 2) (4x - 5)

The answer is (a).

COMPLETING THE SQUARE

Formulae:

 $a^2 + 2ab + b^2 = (a + b)^2$ (i) (ii) $a^2 - 2ab + b^2 = (a - b)^2$ Lecture: Fill in the blanks. $b^2 + 2ab + ___ = (b + a)^2$ $b^{2} + 2ab + \left(\frac{2a}{2}\right)^{2} = (b + a)^{2}$ $b^2 + 2ab + a^2 = (b + a)^2$ **Example:** Fill in the blanks $x^2 + 10x + 2 = (2 + 2)^2$? Solution: $x^{2} + 10x + _ = (_ + _)^{2}$ $x^{2} + 10x + \left(\frac{10}{2}\right)^{2} = (x + \frac{10}{2})^{2}$ $x^2 + 10x + 5^2 = (x + 5)^2$ Exercise-3.1 (1) What are the roots of the equation $x^2 - 8x - 20 = 0$? (b) 4,5 (c) -2,10(a) 4, −5 (d) −2, −6 (2) What are the roots of the equation $3x^2 - 10x + 8 = 0$? (b) 12, 2 (c) -2, -2/3 (d) 2, 4/3(a) -1, 1/3 (3) What are the factors of the equation $2x^2 + 5x - 18 = 0$? (a) (x-3)(2x+9)(b) (x-2)(2x+9)(c) (x-2)(2x+1)(d) (2x+1)(x-9)(4) $x^2 - 6x + 9 = (x - ?)^2$ (a) 3 (b) 2 (c) 6 (d) 9

(5)	$x^2 + 16x$	$-12 = (x + 2)^2 - 76$				
	(a) 12	(b) 64	(c)	16	(d)	8
(6)	$x^2 - 8x$	$-16 = (x - 4)^2 - $?				
	(a) 0	(b) 32	(c)	20	(d)	12

SOLUTIONS OF EQUATION

(d) 0

 $x = \frac{1}{12}$

The answer is (b).

Exercise-3.2

(1)
$$x =?$$
, if $2^{2x+1} + 4^x = 48$.
(a) 0 (b) 1 (c) 2 (d) 3
(2) $x =?$, if $\sqrt{2x + 14} + \sqrt{x + 24} = 9$.
(a) 0 (b) 1 (c) 2 (d) 3
(3) $5^{2x+1} = 1$, then $x =?$

(a)
$$5^{-\frac{1}{2}}$$
 (b) $-\frac{1}{2}$ (c) $-\frac{1}{2}$

NATURE OF THE ROOTS

Lecture:

The nature of roots of a quadratic equation

$$ax^2 + bx + c = 0$$

depend on discriminant

$$D = b^2 - 4ac$$

which is a part of quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The nature of the roots

(i) D = 0, the roots are real and equal.

- (ii) D > 0, the roots are real and distinct (unequal).
- (iii) D < 0, the roots are complex and distinct (unequal).
- (iv) D is perfect square, the roots are rational and distinct,

otherwise irrational and distinct.

Roots are equal if D = 0:

MCQ-6:

What is the nature of the roots of $3x^2 - 6x + 3 = 0$?

- (a) real and equal
- (b) real and unequal
- (c) complex and unequal
- (d) irrational and unequal

Solution:

$$3x^2 - 6x + 3 = 0$$

$$a = 3 \qquad b = -6 \qquad c = 3$$

 $D = b^2 - 4ac$

$$D = (-6)^2 - 4(3)(3)$$

$$D = 36 - 36$$

= 0

The answer is (a).

MCQ-7:

What is the value of *m* if the roots of the equation $5x^2 - 2mx + 6 = 0$ are equal?

MCQ-9:

What is the value of *m* if the roots of the equation $4x^2 - 6x + 3m = 0$ are real and unequal? (a) m > 2/3 (b) m < 1/4 (c) m < 2/3 (d) m < 3/4Solution: $4x^2 - 6x + 3m = 0$ a = 4, b = -6, c = 3m $b^2 - 4ac > 0$ $(-6)^2 - 4(4)(3m) > 0$ 36 - 48m > 03 - 4m > 0-4m > -34m < 3m < 3/4

The answer is (d).

www.mathbunch.com **Roots are complex and unequal if D<0: MCQ-10:** What is the nature of the roots of the equation $5x^2 - 8x + 4 = 0$? (a) real and equal (b) rational and unequal (c) irrational and unequal (d) complex and unequal Solution: $5x^2 - 8x + 4 = 0$ a = 5, b = -8,c = 4 $D = b^2 - 4ac$ $\overline{D} = (-8)^2 - 4(5)(4)$ = 64 - 80=-16 < 0 The answer is (d). **MCQ-11:** What is the value of m if the nature of the roots of the equation $4x^2 - 2mx + 9 = 0$ are complex and distinct? (a) m < -6, m > 6(b) m > 6(c) $m < \pm 6$ (d) -6 < m < 6Solution: $4x^2 - 2mx + 9 = 0$ a = 4, b = -2m, c = 4 $b^2 - 4ac < 0$ $(-2m)^2 - 4(4)(9) < 0$ $4m^2 - 144 < 0$ $m^2 - 36 < 0$ 39

$$m^2 < 36$$

-6 < m < 6 {: $m^2 = 36$ \Rightarrow m = ± 6

The answer is (d).

Roots are rational and distinct if d is perfect square: MCQ-12:

The answer is (b).

Lecture:

If D > 0, the roots are rational or irrational:

If D > 0, the roots are real and distinct (unequal).

Since

 $\mathbb{R} = \mathbb{Q} \cup \mathbb{Q}'$

 \mathbb{Q} : set of rational numbers

Q': set of irrational numbers

so that if D >0

There are two cases.

Case-1: D is perfect square , the roots are rational and distinct.

Case-2: D is not perfect square, the roots are irrational and distinct.

Exercise-3.3

(1)	What is the natu	re of the roots of the	e equation $x^2 - 5x$	+ 6 = 0?	
	(a) irrational	(b) real equal	(c) not real	(d) rational	
(2)	Let D be the disc	criminant of the quad	fratic equation		
		$ax^2 + bx$	+ c = 0		
	The roots of the	equation are real if			
	(a) D = 0	(b) D≥ 0	(c) <i>D</i> < 0	(d) None	
(3)	The roots of a qu	uadratic equation are	e not real if		
	(a) D = 0	(b) D < 0	(c) $D \ge 0$	(d) $D > 0$	
(4)	The roots of a qu	uadratic equation are	e real and distinct if		
	(a) D > 0	(b) D < 0	(c) D = 0	(d) None	
(5)	What are the nat	ture of the roots of tl	ne equation $4x^2$ –	12x + 9 = 0?	
	(a) equal	(b) real distinct	(c) complex	(d) rational	
(6)	What are the nat	ture of the roots of tl	ne equation $x^2 + 2$	x-3=0?	
	(a) equal (b) real distinct ((c) complex (c	d) rational	
		AUTHOR	FREE DO		
		M. MAQSOU	MATHE	MATICS	
		ASSISTANT	E	SY SOOD ALL	
		PROFESSOR OF MATHEMATICS	FROM	WEBSITE	
			www.math	bunch .com	
		V			

SUM AND PRODUCT OF THE ROOTS

The answer is (b).

Lecture:

Explanations:

Sum of the roots and product of the roots without using formulae:

Firstly, find the roots of the equation

$$x^{2} - 5x + 6 = 0$$

$$x^{2} - 2x - 3x + 6 = 0$$

$$x(x - 2) - 3(x - 2) = 0$$

$$(x - 2) (x - 3) = 0$$
Either
$$x - 2 = 0 \text{ or } x - 3 = 0$$

$$x = 2 \quad , \quad x = 3$$
2, 3 are the roots.
Now,
Sum of the roots = 2 + 3 = 5
Products of the roots = 2 × 3 = 6
Using formula:
$$x^{2} - 5x + 6 = 0$$

$$a = 1, \quad b = -5, \quad c = 6$$
Sum of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-b}{a} = \frac{-(-5)}{1} = 5$
Product of the roots = $\frac{-(-5)}{1} = 5$
Product of the roots =

 $a = 5, \quad b = -(m + 6), \quad c = 9$ sum of the roots = 8

$$\frac{-b}{a} = 8$$

$$\frac{-\{-(m+6)\}}{5} = 8$$

$$m + 6 = 40$$

$$m = 34$$
The answer is (a).

MCQ-15:

$$kx^{2} - 5x + 6 = 0$$
, what is the value of k if the product of the roots is 18?
(a) 3 (b) $\frac{1}{3}$ (c) -3 (d) $-\frac{4}{3}$

Solution:

$$\frac{kx^{2} - 5x + 6 = 0}{k^{2} - 5x + 6 = 0}$$

$$a = k, \quad b = -5, \quad c = 6$$
Product of the roots = 18
$$\frac{c}{a} = 18$$

$$\frac{c}{k} = 18$$

$$k = 6/18$$

$$k = 1/3$$
The answer is (b).

The answer is (b).

MCQ-16:

What is the equation whose roots are additive inverse of the roots 5 and 8 of an equation?

(a)	$x^2 + 8x + 5 = 0$	(b) $x^2 + 3x + 13 = 0$
(c)	$x^2 + 2x + 8 = 0$	(d) $x^2 + 13x + 40 = 0$

Solution:

Additive inverse of 5 and 8 are -5 and -8Sum of the roots = (-5) + (-8)

	= -5	- 8			
	= -13				
Produc	t of the roots $=$ (-	-5)(-8)			
Final Fin		(-5)(-8)	taat paal kaad kaad kaad kaad kaad kaad kaad k		
	= 40				
Required Equat	ion:				
x^2 – (sum of the	he roots) $x + (property)$	oduct of the root	s) = 0		
	$x^2 - (-13)x$	x + 40 = 0			
	$x^2 + 13$	3x + 40 = 0			
The answer is (d).					
	BXBR	CISE-3.4			
(1) What is the sum	n of two roots of the	equation $5x^2 - 8$	8x - 4 = 0?		
(a) $1/2$	(b) 5/8	(c) 8/5	(d) 4/5		
(2) The product of	the roots of the equ	uation			
$2x^2 - 5kx + l$	k = 2 <i>is</i> 8. What is t	he value of k?			
(a) 12	(b) 18	(c) 16	(d) 20		
(3) The square of	the sum of the root	s of the equation			
$3x^2 - 6kx + 1$	10 = 0 <i>is</i> 36. What i	is the value of <i>k</i> ?			
(a) −3	(b) 9	(c) $\sqrt{18}$	(d) —6		
(4) The sum of the	e roots of the equation	on $x^2 - 2kx + 12$	2 = 0 is equal to 4 times		
the product of	f the roots. What is t	the value of k ?			
(a) 12	(b) 24	(c) 48	(d) 6		
(5) The product of	(5) The product of the roots of the equation $2x^2 + 6x + k = 1$ is equal to the				
square of the s	sum of the roots. Wh	nat is k?			
(a) −6	(b) 7	(c) 19	(d) 18		

(6) The product of the roots of the equation $3x^2 - 12x + p = 6$ is equal to the				
square root of sur	n of the roots. Wha	it is the value of p?		
(a) 12	(b) 6	(c) 18	(d) 54	
(7) α and β are roots of	f the equation $5x^2$ -	+ 3kx + 20 = 5x.	What is the value of	
$k ext{ if } (\alpha + \beta)^2 = \alpha$	β?			
(a) 15	(b) —5	(c) -25	(d) None	
(8) What is the equation	on whose root are 3	3 <i>i</i> and 5 <i>i</i> ?		
(a) $x^2 - 8x - 1$	5 = 0	(b) $x^2 + 8ix - 1$	5 = 0	
(c) $x^2 - 15x + 3$	8 = 0	(d) None		
(9) What is the equat	ion whose roots are	e three times the roo	ots of	
the equation $(x -$	-2)(x-5)=0			
(a) $x^2 - 21x + 3$	30 = 0	(b) $x^2 - 7x + 10$	0 = 0	
(c) $x^2 - 21x + 3$	90 = 0	(d) $x^2 - 81 = 0$		
(10) Sum and product of	of the roots of the e	equation $x^2 + bx + bx$	c = 0	
are 18 and -115	respectively. What	are the values of b a	ind c?	
(a) 18,115	(b) 115, –18	(c) 18, –115	(d) $-18, -115$	

CUBIC EQUATIONS

 ω is a cube root of 1 (unity).

All cube roots of 1 are

1, ω and ω^2 .

where
$$\omega = \frac{-1+\sqrt{3}i}{2}$$
 and $\omega^2 = \frac{-1-\sqrt{3}i}{2}$

PROPERTIES OF ω

1) $\omega^{3} = 1$ 2) $1 + \omega + \omega^2 = 0$ i) $1 + \omega = -\omega^2$ ii) $1 + \omega^2 = -\omega$ iii) $\omega + \omega^2 = -1$ VALUE OF ω^n i) *n* is exactly divisible by 3: $\omega^n = 1$ ii) The remainder is 1, when n is divided by 3: $\omega^n = \omega$ iii) The remainder is 2, when *n* is divided by 3: $\omega^n=\omega^2$ MCQ-17: $\omega^4 = ?$ (c) ω^2 (d) 0 (a) (b) ω Solution: Remainder is 1, when 4 is divided by 3 $\omega^4=\omega$ $\overline{\omega^4} = \omega^3 \cdot \omega = 1 \cdot \omega = \omega$ Note:

The answer is (b).

MCQ-18:				
			$\omega^{38} = ?$	
(a)	1	(b) ω	(c) ω^2	(d) 0
Solution:				
	Remai	nder is 2, wher	n 38 is divided by 3	had
	[100]100[100]100[100]100[100]100[100]	sal foad hoad foad foad foad foad foad foad foad f	$\omega^{38} = \omega^2$	
Note:	$\omega^{38} =$	$\omega^{36}.\omega^2=(\omega^3$	$(\omega^{3})^{12} \cdot \omega^{2} = (1)^{12} \cdot \omega^{2} = 0$	ω^2
The answe	er is (c).			
MCQ-19:				
			$\omega^{19} = ?$	
(a)	1	(b) ω	(c) ω^2	(d) 0
Solution:				
	Remin	der is 1, when	19 is divided by 3	
	1 400 1 400 1 400 1 400 1 400 1 400 1 400 1	99 69 69 69 69 69 69 69	$\omega^{19} = \omega$	na 1 an 1
Note: a	$\omega^{19} = \omega^1$	$^{8}.\omega = (\omega^{3})^{6}.\alpha$	$\omega = (1)^6 \cdot \omega = \omega$	
The answe	er is (b).			
MCQ-20:				
$\omega^5 + \omega^{18}$	$+ \omega^{25} =$	=?		
(a)	1	(b) ω	(c) ω^2	(d) 0
Solution:				
	Remin	der is 2 when 5	5 is divided by 3 $\Rightarrow \omega^5$	$=\omega^2$
	18 is e	xactly divisible	by 3 $\Rightarrow \omega^{18}$	= 1
	Reminder is 1when 25 is divided by $3 \Rightarrow \omega^{25} = \omega$			
			$\omega^5 + \omega^{18} + \omega^{25}$	
			$=\omega^2 + 1 + \omega$	

$$= 0$$

 $= 1 + \omega + \omega^2$

(d) ω^2

The answer is (d).		
	BXCEF	CISE-3.5
(1) $\omega^{50} = ?$		
(a) 0	(b) 1	(c) ω
(2) $\omega^{37} = ?$		
(a) 0	(b) 1	(c)

(a)	0	(b) 1	(c) <i>ω</i>	(d) ω^2

	Author	FREE DOWNLOAD
	M. MAQSOOD	ALL BOOKS AND CD ON
12	ALI	MATHEMATICS 🤸
	ASSISTANT	BY
	PROFESSOR OF	M. MAQSOOD ALI
	MATHEMATICS	
		www.machbuilch.com

(8)
$$(\omega^{10} + \omega^6)^8 = ?$$

(a) 1 (b) ω (c) ω^2 (d) 2ω

CUBIC EQUATIONS

Lecture:

Real cube root of $x^3 - a^3 = 0$:

$$x = \sqrt[3]{a^3} = a$$

Example-1:

Find real cube root of $x^3 - 27 = 0$

$$x^{3} = 27$$

$$x = \sqrt[3]{27} = \sqrt[3]{3^{3}} = 3$$

All cube roots of a^3 :

All cube roots of $-a^3$:

$$x^3 = -a^3$$

 $x^3 - (-a)^3 = 0$

All cube roots are

$$(-a)$$
, $(-a)\omega$, $(-a)\omega^2$
or
 $-a$, $-a\omega$, $-a\omega^2$

where ω is cube root of 1.

Result:

(i) One cube root is real and other two are complex of the equation

$$x^3 - a^3 = 0$$
 or $x^3 + a^3 = 0$.

(ii) The cube roots of a^3 are $\,a\,$, $a\omega\,$, $a\omega^2$

and the cube roots of $-a^3$ are -a, $-a\omega$, $-a\omega^2$

where
$$\omega = \frac{-1 + \sqrt{3}i}{2}$$
 and $\omega^2 = \frac{-1 - \sqrt{3}i}{2}$ are complex numbers.

This shows that one cube root of a real number is real and other two roots are complex. This result helps us to find all the cube roots of a real number.

MCQ-21:

What are all cube roots of 1 (unity).

(a) 1,
$$\omega$$
, ω^2 (b) 1 (c) 1, -1 (d) 1, -1, ω
Solution:
 $x^3 = 1$
 $x^3 = 1^3$
 $\Rightarrow a = 1$
All cube roots of 1 (unity) are
 a , $a\omega$, $a\omega^2$
 $\Rightarrow 1$, ω , ω^2

The answer is (a).

MCQ-22:

What are the cube roots of 64?

(a) 8	(b) 4,-4, 4ω
(c) 8, -8, 8ω	(d) 4, 4 ω , 4 ω^2

Solution:

The answer is (c).

MCQ-24:

What are the cube roots of 1728?

(b) -6 , 6 , $6\omega^2$ (a) -12 , 12 , $12~\omega$ (d) -12, $-6 + 6\sqrt{3}i$, $-6 - 6\sqrt{3}i$ (c) -8, 8, 4 $(-1 + \sqrt{3}i)$ Solution: Do not find cube roots of 1728. Read the given options carefully. There are two real and one complex roots in i) first three option (a), (b), (c). Option (d) has one real and two complex roots. ii) The answer is (d). EXERCISE-3.6 (1) What is a cube root of 64? (c) 8ω² (b) $-4\omega^2$ (a) -8 (d) 4ω (2) What is a cube root of -27?(a) $3\sqrt{3} i$ (b) $-3\omega^2$ (d) $3\omega^2$ (c) 3ω

AUTHOR

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD

ALL BOOKS AND CD ON MATHEMATICS

BY

MAQSOOD ALI

FROM WEBSITE

www.mathbunch.com