

# **SECTION C**



The letters (x, y, z, a and b etc.) of the alphabet represent the numbers , the operations  $(+, -, x, \div, \text{ etc.})$  studied in arithmatics  $(+, -, x, +, \div, \text{ are used to form equations or expressions or identities is related to a branch of mathematics is called Algebra.$ 

#### For Example,

- (1)  $3x^2 9 = 0$  is an algebraic equation.
- (2)  $ax^2 + by^2$  is an algebraic expression.
- (3)  $(x + y)^2 = x^2 + 2xy + y^2$  is an algebraic identity. Where x, y, z are variables and a, b are arbitrary constants.

#### VARIABLES

Variables are the numbers represented by letters x, y, z, t etc. For example, the equation  $x^2 - 4 = 0$  has two values of x that are 2 and -2.

#### Dependent and Independent Variables:

Consider the following equation of a straight line.

$$y = 2x + 1$$

By substituting the values of x, we get the values of y, as given below.

| X | 0   | 1 | 5  | 8  |
|---|-----|---|----|----|
| у | - 1 | 3 | 11 | 17 |

The value of y depends on the value of x, so y is dependent variable and x independent variable.

On a graph paper the values of independent variable are written on x-axis and the values of dependent variable on y-axis.

#### CONSTANTS

There are two types of constants in an equation.

- (1) absolute constants
- (2) arbitrary constants

In the equation

$$y^2 = 2px^3 + 5q$$

2 and 5 are <u>absolute constants</u> and p and q are arbitrary constants because no values are specified for them.

#### Difference Between Variables and Arbitrary Constants:

$$y = mx + c \longrightarrow (1)$$

is an equation of a straight line.

Where m and c are arbitrary constants, because m has exactly one value for an equation and also c.

For example, when m = 2 and c = 5, equation (1) becomes

$$y = 2x + 5 \longrightarrow (2)$$

If we change the values of m and c, then equation (1) will be another equation of straight line different from equation (2).

For example, when m = -3 and c = 1, the equation (1) becomes

$$y = -3x + 1 \longrightarrow (3)$$

The graph of the lines y = 2x + 5 and y = -3x + 1, shown in the figure, are totally different, where (x, y) represents all the points lie on the lines.



## **EXPRESSION, EQUATION AND IDENTITY:**

|            | Explanation                                                                                                                                                                                                                 | Example                                                                                                                                                                      |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Expression | An algebraic expression is a combination of numbers and variables by using the operations. Where, numbers: absolute constants and arbitarary constants. operations: addition, subtraction, multiplication and division etc. | (1) $x^2 - 6x + 8$<br>(2) $5x^3 + 3kx + 9$<br>where k is an arbitarary constant.                                                                                             |
| Equation   | An algebraic equation is an equality of two algebraic expressions such that both sides are equal for some vlaues of the variables.                                                                                          | $x^2 + 6 = 5x$<br>Both sides are equal only<br>for $x = 2$ and $x = 3$ .<br>But both sides are not<br>equal for other values of<br>$x \in \mathbb{R}$ and $x \in \mathbb{C}$ |
| Identity   | An algebraic identity is an equality of two algebraic expression such that both sides are equal for all values of the variables.                                                                                            | (1) $(x+y)^2 = x^2 + 2xy + y^2$<br>Both sides are equal for all values of $x \in \mathbb{R}$ .                                                                               |
|            | It is possible that an identity may be undefined for some values of the variables.                                                                                                                                          | (2) $x + 1 = x^2 - 1/x - 1$<br>Both sides are equal for all $x \in \mathbb{R}$ but $x \neq 1$ .                                                                              |

Chapter 7

# EXPRESSION

A combination of symbols (representing operation numbers or other mathematical entities) and (addition, subtraction etc.) is said to expression. There is no sign of equality or inequality.

#### NUMERICAL EXPRESSION

A <u>numerical expression</u> includes at least one of the operations of addition, subtraction, multiplication or division and some numbers.

Following are the examples of numerical expressions.

$$100 + 2 - 3$$
 ,  $\frac{3}{2} \times \frac{5}{3}$  ,  $\frac{2}{8} \div \frac{3}{6} + 9$ 

#### ALGEBRAIC EXPRESSION

An expression forms from any combination of numbers and variables by using the operation of addition, subtraction, exponentition etc, is said to be algebraic expression. Following are the examples of algebraic expression.

$$x^{2}$$
, 8,  $6x + 9y$ ,  $\frac{2x^{2} + 3}{x + 1} + 3x^{2} - 7$ ,  $\pi r^{2}h$ ,  $3x^{2} + 2xy - 9x$ 

#### Term:

The parts connected by plus or minus sign in an algebraic expression is called a term.

For example, the algebraic expression  $3x^2 + 9x - 7$  has three terms, that are  $3x^2$ , 9x and -7.

#### MULTINOMIALS

It is an algebraic expression consist of two or more terms.

#### (1) Monomials:

An algebraic expression consist of one term is called monomial. The following are examples of monomials.

(a) 
$$2x^2$$
 (b)  $\frac{x}{2y}$  (c)  $\sqrt{x}$  (4)  $\frac{x}{y^2}$ 

#### (2) Binomials:

An algebraic expression with two terms is called binomial.

The following are the examples of binomials.

(1) 
$$2x^2 + 3x$$
 (2)  $\frac{2x}{y} + 3y^2$  (3)  $\frac{x}{y^3} - 2x^{-2}$ 

#### (3) Trinomials:

An algebraic expression consist of three terms is called trinomial. The following are the examples of trinomials.

(1) 
$$3\sqrt{x} + 2xy - 4$$
 (2)  $\frac{3\sqrt{x}}{y^2} + 6y - 4x$  (3)  $4x^3 + 3x^2 + 1$ 

#### **POLYNOMIAL**

An algebraic sum in which power of all variables are non-negative integers is called polynomial.

The following are the examples of polynomials.

(1) 
$$3x^3 + 5x^2 + 2x + 1$$
 (degree = 3)

(2) 
$$\sqrt{2} x^6 + 3x^2 y^3 + 5xy$$
 (degree = 6)

(3) 
$$3x^6 + 2xy + 5x^3y^2z^2$$
 (degree = 7)

In a term the sum of all exponents of the variables is called degree of a term.

For example, the degree of the term  $3x^2y^3z^4$  is 9. The degree of a polynomial is the highest degree of all terms with non-zero coefficient.

A polynomial must be a multinomial.

#### **RULES OF SIMPLIFICATION**

When an expression has more than one operations and brackets we simply it according to the given order.

Consider the following expression

$$3x + 14x \div (2 + 5) \times 6 - x$$

The simiplication step by step:

#### Step 1: Bracket (parentheses):

Simplify the expression first within the bracket.

$$3x + 14x \div 7 \times 6 - x$$

#### Step 2: Division and Multiplication:

Before addition or subtraction do division or multiplication left to right.

$$3x + 2x \times 6 - x$$
$$3x + 12x - x$$

#### Step 3: Addition and Subtraction:

At last do addition and subtraction left to right.

$$15x - x$$
$$14x$$

#### Example 1:

Simlify: 
$$10x + 3x.4 + 16x \div (3-7) \times 20 - 2x$$

#### Solution:-

$$10x + 3x.4 + 16x \div (3-7) \times 20 - 2x$$

$$= 10x + 3x.4 + 16x \div (-4) \times 20 - 2x$$

$$= 10x + 3x.4 - 4x \times 20 - 2x$$

$$= 10x + 12x - 80x - 2x$$

$$= 22x - 80x - 2x$$

$$= -58x - 2x$$

$$= -60x$$

M. Maqsood Ali

| Symbol | Name        |  |
|--------|-------------|--|
| ( )    | parentheses |  |
| [ ]    | brackets    |  |
| { }    | braces      |  |
|        | vinculum    |  |

#### Rules of Simplification of Brackets:

If there are more than one brackets in an expression, then we simplify the expression as given below.

$$[5x - \{3x + (2x - x + 3)\}]$$

$$= [5x - \{3x + (2x - x - 3)\}]$$

$$= [5x - \{3x + (x - 3)\}]$$

$$= [5x - \{3x + x - 3\}]$$

$$= [5x - \{4x - 3\}]$$

$$= [5x - 4x + 3]$$

$$= x + 3$$

#### L.C.M. AND L.C.D.

See Arithmetic for L.C.M. and L.C.D.

Example 2: Find the L.C.M and H.C.F of the following:

$$5x^3y^2$$
 ,  $25x^2y^2$  ,  $10x^5y$ 

Solution:-

L.C. 
$$M = 50x^5y^2$$
  
H.C.  $F = 5x^2y$ 

**Example 3:** Find L.C.D. of the following:

$$\frac{3}{2x^2y^3}$$
,  $\frac{12}{x^4y}$ ,  $\frac{15}{4xy}$ 

Solution:-

$$L.C.D = 4x^4y^3$$

#### **FACTORIZATION**

We will factorize the following three types of quadratic expression one by one.

(1) 
$$x^2 - 3x$$

(2) 
$$x^2 - 25$$

(2) 
$$x^2 - 25$$
 (3)  $2x^2 + 13x + 18$ 

(1) 
$$x^2 - 3x = x(x - 3)$$

Remarks: No constant term.

(2) 
$$x^2 - 25 = x^2 - 5^2$$
  
=  $(x - 5)(x + 5)$ 

Remarks: No term involving x.

$$(3) \quad 2x^2 + 13x + 18$$

Step 1: Multiply the coefficients of  $x^2$  and constant term 18.

$$2 \times 18 = 36$$

Step 2: Break the middle term, such that the product of these terms is 36 and sum 13.

#### Step 3:

| Trail          | Product | Sum | Remarks |
|----------------|---------|-----|---------|
| 1, 36          | 36      | 37  | no      |
| 1, 36<br>2, 18 | 36      | 20  | no      |
| 3, 12          | 36      | 15  | no      |
| 4, 9           | 36      | 13  | yes     |

#### Step 4:

$$2x^{2} + 13x + 18 = 2x^{2} + 4x + 9x + 18$$
$$= 2x(x + 2) + 9(x + 2)$$
$$= (x + 2)(2x + 9)$$

(33) 
$$\frac{5}{2ab}$$
,  $\frac{3}{4a^2b}$ ,  $\frac{2}{ab^3}$ 

(33) 
$$\frac{5}{2ab}$$
,  $\frac{3}{4a^2b}$ ,  $\frac{2}{ab^3}$  (34)  $\frac{5x^2}{(x^2+y^2)}$ ,  $\frac{15x^3}{(x^2+y^2)^3}$ 

(35) 
$$\frac{2x}{(x+y)^3}$$
,  $\frac{4x}{(x+y)^5}$ 

#### Factorize the following:

(36) 
$$5a^2b + ab^3$$

$$(37) \quad 10m^4n^3 - 20m^2n$$

$$(38) \quad 3a^3b^3c^3 + 6a^2b^3c^2 - 9a^4bc^3$$

$$(39) \quad 6x^2y^3 + 3xy^4 - 9x^3y$$

(40) 
$$2(a + b)^2 + 5(a + b)$$
 (41)  $14(x + y)^4 + 21(x + y)^3$ 

(42) 
$$\frac{12x^2}{y^3} + \frac{6x^4}{y^5}$$
 (43)  $\frac{5x^3}{(x+y)^2} + \frac{15x^4}{(x+y)^3}$ 

(44) 
$$\frac{2(a+b)^3}{a^2b^3} + \frac{5(a+b)^4}{a^3b^2}$$

#### Simplify the following:

$$(45) \quad 6x^3 + 5x^8 - 3x^3 - 2x^8$$

$$(45) \quad 6x^3 + 5x^8 - 3x^3 - 2x^8 \qquad (46) \quad 5x^2 - 10x^3 - 3x^2 + 10x^3$$

$$(47) \quad 6x^2 \times 2x^3 - 2x^5 \qquad (48) \quad 2a^5 \div 4a^3 \times 8a^2$$

$$(48) \quad 2a^5 \div 4a^3 \times 8a^2$$

(49) 
$$5x^3 \times 10x^5 \div 2x^4$$

$$(50) \quad 10x^3 + 5x^6 \div 2x^3$$

(49) 
$$5x^3 \times 10x^5 \div 2x^4$$
 (50)  $10x^3 + 5x^6 \div 2x^3$  (51)  $5x^0 + 3x^2 \div 6x^2 - 6$  (52)  $3x \times 5 \div 2x - 8$ 

(52) 
$$3x \times 5 \div 2x - 8$$

$$(53) \quad 2x^3 \times 5x^3 + 2x^3 \div 6x^3$$

(53) 
$$2x^3 \times 5x^3 + 2x^3 \div 6x^3$$
 (54)  $5x^2 \div 10x^2 \times 4x^3 - 6x^3$ 

(55) 
$$10x^3 - 6x^3 \div 3x^2 \times 9x^2$$
 (56)  $(3x^2 + 2x^3 \div x) \times 5x^3 + 8x^5$ 

(57) 
$$(5x + 2x^2)^2 - 8x^2 \div 4x^{-5} \times 5x$$

(58) 
$$5x^2y^2 - \left\{2x^4 \div \left(\frac{x^2}{y^2} - \frac{5x^2}{y^2}\right)\right\}$$

(59) 
$$2x + [3x - \{5(2x - \overline{6x - 3})\}]$$

(60) 
$$2x^2 + \{3x^3 - (2x^4 \div 3x - 5x^3)\}$$

#### Simplify the following:

(61) 
$$\left(\frac{x}{y}\right)^3 \div \left(\frac{x^2}{y^3}\right)^0 \times \left(\frac{x^2}{y^2}\right)^2$$

(62) 
$$\left(\frac{x^2y}{z^2}\right)^2 + \left(\frac{x^3y^2}{z^2}\right)^4 \div \left(\frac{x^4y^3}{z}\right)^4$$

(63) 
$$\left(\frac{x^2y^2}{z^4}\right)^3 \times \left(\frac{3xy^3}{z^2}\right)^2 - \left(\frac{x^4y^3}{z^4}\right)^4$$

(64) 
$$(2x^3y)^4 - (y^2)^3 \div (5x^{-6}y)^2$$

(65) 
$$(3x^{-2}z^3)^{-3} + (x^4z^3)^2 \times (4xz^{15/2})^{-2}$$

(66) 
$$x^{3/2} \div x^{5/2} \times x^2 + 5x$$
 (67)  $x^{1/2} \div x^{-3/2} + x^{5/2} \times x^{-1/2}$ 

(68) 
$$(x^{-1/2} y^{1/3})^3 \div (x^{-2/5} y)^5$$
 (69)  $x^{-1/2} \div x^{-3/2} \times x^{2/3}$ 

(70) 
$$x^{\circ} \div x^{-3/2} \div x^{5/2} \times x$$

#### Simplify the following:

(71) 
$$\frac{3}{6x^3} + \frac{5}{9x^2}$$
 (72)  $\frac{5x}{2y^2} + \frac{6y}{10y^3}$ 

(73) 
$$\frac{6x+5}{x+y}+2$$
 (74)  $\frac{5x+2y}{3}-\frac{2x-7y}{6}$ 

(75) 
$$\frac{2(x+y)}{5} + \frac{x+7}{2} - y$$
 (76)  $(5x+2)(3+2y) + \frac{2xy-7x}{4}$ 

(77) 
$$\frac{3(5x+6y)}{5} - \frac{7(3x+5)}{10}$$
 (78)  $\frac{5a}{(a+b)^2} - \frac{2}{(a+b)}$ 

(79) 
$$\frac{5}{(x-y)^3} + \frac{6x}{(x-y)^2}$$
 (80)  $\frac{2}{5xy^3} + \frac{7}{20x^2y} + 3$ 

# **EXERCISE C-2**

#### Factorize the following expressions:

$$(1) \quad 2x + xy^2$$

(3) 
$$3ab + 9a^2b^2$$

$$(5) 2x^2 + 6x^4$$

$$(2) \quad 3xy^2 + 15x^2y + 9x^2y^2$$

(4) 
$$15a^2b + 10a^3c$$

(7)  $2(a+b)^2 + a + b$ 

(9) 5x - 5y - 2ax + 2ay

#### Factorize the following expressions:

(6) 
$$a + b + (a + b)^2$$

(8) 
$$5(a-b)^2 - 2a + 2b$$

$$(10) \quad 3x^2 - 9xy + xy - 3y^2$$

#### Factorize the following expressions:

(11) 
$$x^2 - 4$$

$$(13) \quad 4x^2 - 9y^2$$

(15) 
$$3x^2 - 5y^2$$

(17) 
$$a^2 - b^2 - a + b$$

(19) 
$$a + 5b + a^2 - 25b^2$$

(12) 
$$9a^2 - b^2$$

(14) 
$$16m^2 - 25n^2$$

(16) 
$$x^2 - y^2 + x + y$$

$$(18) \quad 4a^2 - b^2 + 2a - b$$

#### Factorize the following expression:

(20) 
$$x^2 + 5x + 6$$

(22) 
$$x^2 + 4x + 4$$

(24) 
$$x^2 + 2x - 15$$

$$(26) \quad 2x^2 + 7x + 6$$

(21) 
$$x^2 - 7x + 10$$

(23) 
$$x^2 - 6x + 9$$

(25) 
$$x^2 - 3x - 18$$

$$(27) \quad 3x^2 - 17x + 10$$

### M.C.Q's C-2

| (1) | 2     | M and H.C.F of $6x^3y^2$ , 10                                                    |     |                            |  |  |  |
|-----|-------|----------------------------------------------------------------------------------|-----|----------------------------|--|--|--|
|     | (a)   | $60x^4y^3$ , 15xy                                                                | (b) | $30x^3y^3$ , $2xy$         |  |  |  |
|     | (c)   | $30x^3y^2$ , 2xy                                                                 | (d) | $30x^3y^2$ , $2x^3y^2$     |  |  |  |
| (2) | L.C.I | L.C.M and H.C.F of $15x^2y^3z^0$ , $6x^4y^2z^2$ and $10x^3y^5z$ are respectively |     |                            |  |  |  |
|     | (a)   | $900x^9y^{10}z^3$ , $2x^2y^2z$                                                   | (b) | $300x^4y^5z^2$ , $2x^2y^2$ |  |  |  |
|     | (c)   | $15x^2y^2z^0$ , $60x^4y^5z^2$                                                    | (d) | $30x^4y^5z^2$ , $x^2y^2$   |  |  |  |
|     |       |                                                                                  |     |                            |  |  |  |

(3) What is the L.C.M of  $\frac{8}{x^3}$ ,  $\frac{6}{x^5}$ ?

| (a) $x^5$ | (b) $x^8$                    | (c) $\frac{48}{x^8}$ | (d) $\frac{24}{x^5}$ |
|-----------|------------------------------|----------------------|----------------------|
|           |                              |                      | X                    |
|           | $\mathbf{x}^8  \mathbf{x}^6$ |                      |                      |

(4) What is the L.C.M of  $\frac{x}{12}$ ,  $\frac{x}{18}$ ? (a)  $\frac{x^8}{36}$  (b)  $\frac{x^{14}}{216}$  (c) 36 (d) 216

(5) What is the L.C.M of 
$$\frac{16}{(x^2 + y^2)}$$
,  $\frac{12}{(x + y)^2}$ ?  
(a)  $\frac{48}{(x + y)^2}$  (b)  $(x^2 + y^2)(x + y)^2$ 

(c) 
$$\frac{48}{(x^2+y^2)(x+y)^2}$$
 (d)  $\frac{48}{x^2+y^2}$ 

(6) What is the L.C.D of  $\frac{3}{x^3}$ ,  $\frac{15}{x^4}$ ,  $\frac{20}{x^6}$ ?

(a) 60 (b)  $x^6$  (c)  $\frac{60}{x^6}$  (d)  $\frac{900}{x^{13}}$ 

(7) What is the L.C. D of 
$$\frac{1}{6x^3}$$
,  $\frac{1}{9x^5}$ ?  
(a)  $\frac{1}{54x^8}$  (b)  $54x^8$  (c)  $\frac{1}{18x^5}$  (d)  $18x^5$ 

(8) What is the L.C.D of  $\frac{12}{ax+a}$ ,  $\frac{16}{x}$ ?

(a) 
$$\frac{48}{ax+a}$$
 (b)  $\frac{48}{a(x+1)x}$  (c)  $a(x+1)$  (d)  $ax(x+1)$ 

 $-\frac{7}{3}$ 

2

(30)

(a)

 $(0.02)^x = 8 \times 5^x$  then x = ?

(b)

 $-\frac{2}{3}$ 

(d)

(d)

5/3

 $-1/_{2}$ 

(c)

(c)

#### Chapter 8

# **EQUATIONS**

An equation is a equality of two algebraic expressions. An equation consists of one or more than one variable.

Following are the examples of equations.

(1)  $5x^3 + 2x + 5 = 0$  (one variable, x)

(2)  $3x^2y + 5x = 9y^2 + c$  (two variables x and y)

(3)  $5ax^3 + 9bxyz = 6$  (three variables x, y and z)

(4)  $ax^m + 5x^2 + 1 = 0$  (one variable x)

Note: x is said to be base and m exponent or power or index.

#### **POLYNOMIAL EQUATION**

An equation in which both sides of the equality are polynomials is called polynomial equation.

An equation is called is standard form if all the terms are written on left side and zero on right side.

$$ax^m + bx^{m-1} + \ldots + cx + d = 0$$

If the equation is in standard form the degree of the equation is the degree of the polynomial of left side.

#### **ROOTS OF A POLYNOMIAL EQUATION:**

The number of roots of a polynomial equation depend on the degree of the polynomial equation. Such that

(1)  $x^3 - 3x^2 + 5x + 7 = 0$  (degree 3, roots are not more than 3)

(2)  $7x^5 + 2x^4 - 2x^2 + 7x - 3 = 0$  (degree 5, roots are not more than 5)

(3)  $3x^7 - 2x^6 + 2x^3 + 2x - 9 = 0$  (degree 7, roots are not more than 7)

Note: A polynomial equation can not have roots more than its degree.

#### NUMBER OF POSITIVE AND NEGATIVE ROOTS

French Mathematician Rene Descartes (seventeenth century) discovered a rule for a polynomial equation P(x) = 0 with real coefficients and arranged in descending power of x, that

- (1) The number of positive real roots of a polynomial equation P(x) = 0 is either equal to the number of variation of sign for P(x), or less than that number by an even integer.
- (2) The number of negative real roots of a polynomial equation P(x) = 0 is either equal to the number of variation of sign for P(-x), or less than that number by an even integer.

**Note:** The terms with zero coefficients (missing terms) must be ignored when counting the total number of variations of sign.

**Example 1:** Determine the possible number of positive and negative roots of  $5x^7 - 3x^5 + 2x^4 + x^2 - x - 9 = 0$ .

Solution:-

$$P(x) = 5x^7 - 3x^5 + 2x^4 + x^2 - x - 9 = 0$$

P(x) has three variations of sign.

Therefore, equation has 3 or 1 positive roots.

Since,

$$P(-x) = 5(-x)^{7} - 3(-x)^{5} + 2(-x)^{4} + (-x)^{2} - (-x) - 9 = 0$$

$$P(-x) = -5x^{7} + 3x^{5} + 2x^{4} + x^{2} + x - 9 = 0$$

P(-x) has two variation of sign.

Therefore, equation has 2 or 0 negative roots.

Example 2: Find the possible roots of the following equation.

$$2x^3 + x^2 - 13x + 6 = 0$$

Solution:-

$$2x^3 + x^2 - 13x + 6 = 0$$
 
$$a_o = 6 => p = \pm 1, \pm 2, \pm 3, \pm 6$$
 {possible integer roots} 
$$a_3 = 2 => q = \pm 1, \pm 2$$

Possible rational roots are

$$\frac{p}{q} = \pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{3}{2}$$
where  $\pm \frac{1}{2}, \pm \frac{3}{2}$  are possible fraction roots

Since,

$$P(x) = 2x^3 + x^2 - 13x + 6$$

Two variations of sign. Therefore, number of positive real roots are 2 or 0.

$$P(-x) = -2x^3 + x^2 + 13x + 6$$

One variation of sign. Therefore, number of negative real roots are 1.

#### Test for Roots:-

$$P(0) = 6 \neq 0$$

$$P(1) = 2(1)^3 + 1^2 - 13(1) + 6 = -4 \neq 0$$

{one root lies between 0 and 1}

$$P(2) = 2(2)^3 + 2^2 - 13(2) + 6 = 0$$
 {2 is a root}

Since this equation has at most two positive roots.

Now we test for negative roots.

$$P(-1) = 2(-1)^3 + (-1)^2 - 13(-1) + 6 = 18 \neq 0$$

$$P(-2) = 2(-2)^3 + (-2)^2 - 13(-2) + 6 = 20 \neq 0$$

$$P(-3) = 2(-3)^3 + (-3)^2 - 13(-3) + 6 = 0$$
 {-3 is a root}

One root lies between 0 and 1, trial  $\frac{1}{2}$ .

$$P\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^2 - 13\left(\frac{1}{2}\right) + 6 = 0 \qquad \left\{\frac{1}{2} \text{ is a root}\right\}$$

So that -3,  $\frac{1}{2}$  and 2 are the roots of the equation.

#### REAL ROOTS OF AN EQUATION BY THE GRAPH

Consider the following equation in x.

$$ax^m + bx^n + \ldots + cx + d = 0$$

Suppose that

$$f(x) = ax^m + bx^n + \ldots + cx + d = 0$$

The graph of f in xy-plane is shown given below.



As we know that, p is the root of the equation if f(p) = 0.

Since the value of f(x) is zero on x-axis, hence the real roots of the equation are that where the curve intersects or touches x-axis. So that a  $_1$ , a  $_2$ , a  $_3$  and a  $_4$  are real roots of the above equation.

### EXERCISE C-3

Write down the possible number of positive and negative real roots. Also write down all expected roots of the equation.

$$(1) \quad x^3 + 4x^2 + x - 6 = 0$$

(2) 
$$x^4 + 4x^3 - x^2 - 16x - 12 = 0$$

(3) 
$$x^3 - 4x^2 - 25x + 28 = 0$$

(4) 
$$x^3 + 5x - 4x^2 - 20 = 0$$

(5) 
$$x^4 + 9x^3 + 13x^2 - 9x - 14 = 0$$

(6) 
$$x^4 + 10x + 2x^3 + 2x^2 - 15 = 0$$

(7) 
$$5x^3 - 7x^2 - 28x + 12 = 0$$

$$(8) \quad 3x^3 + x^2 - 8x + 4 = 0$$

(9) 
$$5x^3 + 35x + 26x^2 + 6 = 0$$

$$(10) \quad 2x^3 - 9x^2 + 13x - 6 = 0$$

 $x^4 - 9x + 9x^3 + 13x^2 - 14 = 0$ ?

(1) How many positive real roots have the equation

# M.C.Q's C-3

|      | (a)                                            | 1                                                            | (b)        | 3                 | (c)        | 5                 | (d)    | 2   |  |
|------|------------------------------------------------|--------------------------------------------------------------|------------|-------------------|------------|-------------------|--------|-----|--|
| (2)  |                                                | many negativ                                                 |            |                   | e equa     | tion              |        |     |  |
|      | $x^4 +$                                        | $9x^3 + 13x^2 -$                                             | 9x - 1     | 14 = 0?           |            |                   |        |     |  |
|      | (a)                                            | 5                                                            | (b)        | 2                 | (c)        | 3                 | (d)    | 0   |  |
| (3)  | How                                            | many negativ                                                 | ve root    | s have the equ    | uation     |                   |        |     |  |
|      | $x^4 +$                                        | $2x^3 + 2x^2 + 1$                                            | 10x - 1    | 15 = 0?           |            |                   |        |     |  |
|      | (a)                                            | 4                                                            | (b)        | 1                 | (c)        | 2                 | (d)    | 5   |  |
| (4)  | How                                            | many positiv                                                 | e real     | roots the follo   | wing       | equation has      |        |     |  |
|      | $x^4 +$                                        | $2x^2 + 10x + 1$                                             | $2x^3 - 3$ | 15 = 0?           |            |                   |        |     |  |
|      | (a)                                            | 4                                                            | (b)        | 0                 | (c)        | 3                 | (d)    | 1   |  |
| (5)  | How                                            | many negativ                                                 | ve root    | s have the equ    | uation     |                   |        |     |  |
|      | $x^5$ -                                        | $5x^4 + 2x^3 + 4$                                            | $4x^2-8$   | 3x + 96 = 0?      |            |                   |        |     |  |
|      | (a)                                            | 4                                                            | (b)        | 1                 | (c)        | 5                 | (d)    | 2   |  |
| (6)  | How                                            | many positiv                                                 | e real     | roots have the    | equa       | tion              |        |     |  |
|      | $x^5$ -                                        | $5x^4 + 2x^3 + 4$                                            | $4x^2-8$   | 3x + 96 = 0?      |            |                   |        |     |  |
|      | (a)                                            | 1                                                            | (b)        | 5                 | (c)        | 3                 | (d)    | 2   |  |
| (7)  | How                                            | many positiv                                                 | e real     | roots have the    | equa       | tion              |        |     |  |
|      | $x^4 +$                                        | $11x^3 + 41x^2$                                              | + 61x      | + 30 = 0?         |            |                   |        |     |  |
|      | (a)                                            | 3                                                            | (b)        | 1                 | (c)        | 0                 | (d)    | 4   |  |
| (8)  | How many negative real roots have the equation |                                                              |            |                   |            |                   |        |     |  |
|      | $x^4 + 11x^3 + 41x^2 + 61x + 30 = 0$ ?         |                                                              |            |                   |            |                   |        |     |  |
|      | (a)                                            | 5                                                            | (b)        | 1                 | (c)        | 3                 | (d)    | 4   |  |
| (9)  | How                                            | many negativ                                                 | ve real    | roots have th     | e equa     | tion              |        |     |  |
|      |                                                | $9x - 6x^2 - 5$                                              |            |                   |            |                   |        |     |  |
|      | (a)                                            | 0                                                            | (b)        | 3                 | (c)        | 2                 | (d)    | 4   |  |
| (10) | Wha                                            | t is a root of t                                             | the equ    | tation $x^3 + 5x$ | $x^2 - 17$ | x - 21 = 0?       |        |     |  |
|      | (a)                                            |                                                              | (b)        | 5                 | (c)        |                   | (d)    | -7  |  |
| (11) | Wha                                            | t is a root of t                                             | the equ    | nation $x^4 - 7x$ | $x^3 + 16$ | $5x^2 - 28x + 48$ | 8 = 0? |     |  |
|      | (a)                                            | 5                                                            | (b)        | 4                 | (c)        | -7                | (d)    | 9   |  |
| (12) |                                                | 그러워 보고 있다는 그 모든 그들은 가게 하는 사람이 되었다. 그렇는 사람들은 모든 그들은 사람들이 되었다. |            |                   |            |                   |        |     |  |
|      |                                                |                                                              |            |                   |            |                   | (d)    | -13 |  |

|      | Jection | C             |              |                       |                    |               | 1          |               |
|------|---------|---------------|--------------|-----------------------|--------------------|---------------|------------|---------------|
| (13) | Wha     | t is a roo    | t of the equ | ation x <sup>3</sup>  | $-16x^2 + 7$       | 1x - 56       | = 0?       |               |
|      |         |               | (b)          |                       |                    |               |            | 17            |
| (14) | Wha     | t is a roo    | t of the equ | iation x <sup>4</sup> | $+ 11x^3 + 4$      | $1x^2 + 61$   | x + 30 = 0 |               |
|      | (a)     | -7            | (b)          | 7                     | (c)                | 5             | (d)        | -5            |
| (15) | Wha     | t is a roo    | t of the equ | iation x <sup>3</sup> | $-12x^2+4$         | 1x - 42       | = 0?       |               |
|      | (a)     | -9            | (b)          | -7                    | (c)                | 5             | (d)        | 7             |
| (16) | Wha     | t is a roo    | t of the equ | ation 2x              | $^{3} + 13x^{2} +$ | 17x - 12      | 2 = 0?     |               |
|      | (a)     | $\frac{5}{3}$ | (b)          | $1/_{2}$              | (c)                | 5             | (d)        | -7            |
| (17) | Wha     | t is a roo    | t of the equ | ation 3x              | $^3+x^2-8x$        | t + 4 = 0     | ?          |               |
|      | (a)     | $^{2}/_{3}$   | (b)          | $\frac{5}{3}$         | (c)                | $3/_{2}$      | (d)        | -7            |
| (18) | Wha     | t is a roo    | t of the equ | ation 3x              | $^3+x^2-8x$        | t + 4 = 0     | ?          |               |
|      | (a)     | $\frac{5}{3}$ | (b)          | $^{2}/_{3}$           | (c)                | 8/3           | (d)        | $-7/_{3}$     |
| (19) | Wha     | t is a roo    | t of the equ | ation 5x              | $^{3} + 26x^{2} +$ | 35x + 6       | = 0?       |               |
|      | (a)     | $\frac{3}{5}$ | (b)          | $^{2}/_{5}$           | (c)                | $-1/_{5}$     | (d)        | $-4/_{5}$     |
| (20) | Wha     | t is a roo    | t of the equ | ation 2x              | $^3-9x^2+1$        | 3x - 6 =      | = 0?       |               |
|      | (a)     | $-3/_{2}$     | (b)          | $-1/_{2}$             | (c)                | $\frac{5}{2}$ | (d)        | $\frac{3}{2}$ |
|      |         |               |              |                       |                    |               |            |               |

Example 1: Three years ago the age of Sarim was double the age of Asif. At present Sarim is 5 years older than Asif. Find the age of sarim now.

#### Solution:-

Sarim's age = x

Asifs age = x - 5

Three years ago

$$(x-3) = 2(x-5-3)$$
  
 $x = 13$ 

Sarim's age is 13 years.

Example 2: Asif, Wasim and Ali share Rs.569. Asif share is 5 less than double the share of Ali and Ali's share is three fifth the share of Wasim. Find the shares of Asif, Wasim and Ali.

#### Solution:-

Wasim's share = x

Ali's share 
$$=\frac{3}{5}x$$

Asif s share = 
$$2\left(\frac{3x}{5}\right) - 5 = \frac{6x - 25}{5}$$

So that,

$$x + \frac{3x}{5} + \frac{6x - 25}{5} = 569$$
$$x = 205$$

- ... Rs.205, Rs.241 and Rs.123 are the shares of Wasim, Asif and Ali respectively.
- Example 3: A cyclist leaves his house at 10: 45 a.m. and reaches to a shop at a distance 2 km from his house at an average speed 4 km/h and than walks 2 hours 15 minutes to reach his office. At what p.m. he will be at his office.

#### Solution:-

$$t_1 = \frac{x}{v} = \frac{2}{4} = \frac{1}{2}h = 30$$
 minutes

Time to reach office = 10:45 + 00.30 + 02:15

= 13:30

|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IVI       | .C.Q        | S C-       | 4                            |            |          |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|------------|------------------------------|------------|----------|
| 5 mo   | re than tw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ice a nun | ber is 49.  | What is    | the numbe                    | r?         |          |
| (a)    | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (b)       | 29.5        | (c)        | 22                           | (d)        | 27       |
| 200    | oroduct of<br>What are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |             | l five min | nus the quo                  | tient of x | an d 6 i |
| (a)    | $0, -\frac{5}{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (b)       | 0, 30       | (c)        | -5, 1                        | (d)        | 2, 1     |
| 3 less | s than five                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | times a r | number. W   | hat is th  | e algebraic                  | expressio  | n?       |
| (a)    | 5x - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b)       | 5x + 3      | (c)        | 3 - 5x                       | (d)        | 3 @52    |
|        | times a nuession?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ımber de  | creased by  | 7 is 5. V  | Vhat is the                  | algebraic  |          |
| (a)    | 7 - 9x =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5         | (1          | o) 9(x     | -7) = 5                      |            |          |
| (c)    | 9x - 5 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7         | (6          | d) 9x -    | -7 = 5                       |            |          |
|        | 5 M 3 6 M 3 M 3 M 3 M 3 M 3 M 3 M 3 M 3 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |             |            | s two year<br>their ages     |            | than     |
| (a)    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (b)       | 9           | (c)        | 8                            | (d)        | 5        |
| three  | the same of the sa | nger than |             |            | the age of<br>s the age o    |            |          |
| share  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and Kha   | lid's share |            | are is 5 les<br>fifth the sh |            |          |
| (a)    | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (b)       | 241         | (c)        | 205                          | (d)        | 307      |
| share  | of Bashir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e and Sal | man's shar  |            | s share is t<br>e the sum o  |            |          |
|        | What is t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | 600         | (c)        | 120                          | (d)        | 150      |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             | (()        | 1 7 1 1                      | (0)        | 150      |

| (18) | The salary of a sales man is \$200 plus commission 40 cent per bundle |
|------|-----------------------------------------------------------------------|
|      | after selling 100 bundles. If he sales 250 bundles, how much does he  |
|      | receive this month?                                                   |

(a) \$300 (b) \$260 (c) \$250.10 (d) None

(19) The price of petrol is Rs.36 per litre. Ali's car travels 12km per litre. How many kilometers he travels if he has petrol in the car of Rs.x.

(a) 3x (b) 3/x (c) x/3 (d) None

(20) Ali has a car. The car is gone 10km per litre and Ali has petrol of Rs.600 in his car and travel x km. What is the price in rupees of the petrol per litre.

(a)  $6000/_{\rm X}$  (b)  $60/_{\rm X}$  (c)  $x/_{60}$  (d)  $x/_{6}$  [For more problems see also topics "system of two equations" and "rate"].

#### Chapter 8B

### **QUADRATIC EQUATIONS**

The equation in the form

$$ax^2 + bx + c = 0 , a \neq 0$$

is a second degree polynomial equation or quadratic equation in x.

#### SOLUTION OF A QUADRATIC EQUATION

We discuss three methods to determine the roots of a quadratic equation.

(1) Factorization

(2) Completing the square

(3) Quadratic Formula

#### (1) Determining Roots by Factoring:

(i)  $x^2 + 5x = 0$  no constant term.

Factoring the equation

$$x(x+5)=0$$

Either

$$x = 0$$

or 
$$x + 5 = 0$$

$$x = 0$$

$$x = -5$$

Therefore, 0 and -5 are the roots of the equation.

(ii) 
$$2x^2 + 5x + 3 = 0$$

Break 5x into two terms such that the sum of the terms is 5x and product  $6x^2$ .

| Trial | Product | Sum | Remarks |
|-------|---------|-----|---------|
| 1,6   | 6       | 7   | no      |
| 2,3   | 6       | 5   | yes     |

$$2x^2 + 2x + 3x + 3 = 0$$

$$2x(x+1) + 3(x+1) = 0$$

$$(x+1)(2x+3)=0$$

Either

$$x + 1 = 0 \quad \text{or} \quad$$

$$2x + 3 = 0$$

$$x = -1$$
 or

$$x = -3/2$$

Therefore, the roots of the equation are -1 and -3/2.

$$x^2 + \frac{b}{a}x = -\frac{c}{a}$$

Step 3: Adding both sides  $\left(\frac{\text{coefficien t of } x}{2}\right)^2$  that is  $\left(\frac{b}{2a}\right)^2$ .

$$x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2} = \frac{-c}{a} + \left(\frac{b}{2a}\right)^{2}$$

Step 4:

$$\left(x + \frac{b}{2a}\right)^2 = -\frac{c}{a} + \frac{b^2}{4a^2}$$

$$\left(x + \frac{b}{2a}\right)^2 = \frac{-4ac + b^2}{4a^2}$$

$$x + \frac{b}{2a} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}}$$

$$x = \frac{-b}{2a} \pm \frac{\sqrt{b^2 \cdot 4ac}}{2a}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

It is called quadratic formula.

#### (3) Determining Roots Using Quadratic Formula:

We solve the following quadratic equation using quadratic formul a.

$$x^2 - 5x + 6 = 0$$

The quadratic formula is

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

By substituting a = 1, b = -5 and c = 6, we have

$$x = \frac{5 \pm \sqrt{25 - 24}}{2}$$
$$= \frac{5 \pm 1}{2}$$

Either 
$$x = \frac{5+1}{2}$$
 or  $x = \frac{5-1}{2}$   
 $x = 3$  or  $x = 2$ 

# **EXERCISE C-4**

Factorize the following equations and hence find the roots of the equations:

$$(1) x^2 - 2x + 1 = 0$$

$$(2) \quad x^2 + 3x - 10 = 0$$

$$(3) t^2 - 5t + 6 = 0$$

$$(4) \quad 3y^2 + 13y + 14 = 0$$

$$(5) \quad 5u^2 - 7u - 6 = 0$$

Using completing the square method, find the roots of the following equations:

(6) 
$$x^2 + 4x = 5$$

(7) 
$$x^2 - 6x = 16$$

$$(8) \quad 2x^2 + 6x - 8 = 0$$

$$(9) 3x^2 = 5x + 1$$

$$(10) 8x - 3x^2 = 3$$

Using quadratic formula, find the roots of the following equations:

$$(11) \quad x^2 + 6x + 9 = 0$$

$$(12) \quad 3x^2 - 5x + 25 = 0$$

$$(13) \quad 2x^2 - 6x - 20 = 0$$

$$(14) \quad x^2 - 10x - 30 = 0$$

$$(15) \quad x^2 + 5x + 25 = 0$$

### NATURE OF THE ROOTS OF A QUADRATIC EQUATION

A quadratic equation has at most two roots. These roots may be real distinct, real equal, rational distinct or complex. We can determine the nature of the roots without solving the equation, using discriminant. The expression  $b^2 - 4ac$  appearing under the radical in quadratic formula is called discriminant. To determine the nature of the roots of the quadratic equation  $ax^2 + bx + c = 0$ , we find the value of  $D = b^2 - 4ac$ . There are four cases.

- (1)  $D > 0 \Leftrightarrow$  the roots are real and distinct.
- (2)  $D = 0 \Leftrightarrow$  the roots are real and equal.
- (3)  $D < 0 \Leftrightarrow$  the roots are complex and distinct.
- (4) D is perfect square  $\Leftrightarrow$  the rotos are rational and distinct.

According to (1) and (2) we can say that

 $D \ge 0 \Leftrightarrow$  the roots are real.

Example 1: Determine the nature of the roots of the following equations.

(1) 
$$x^2 - 5x + 6 = 0$$

$$(2) \quad x^2 - 4x + 4 = 0$$

M. Magsood Ali

$$(3) \quad x^2 + 3x + 5 = 0$$

$$(4) \quad x^2 + 5x + 4 = 0$$

Solution:-

Since,  $D = b^2 - 4ac$ 

(1)

$$D = (-5)^2 - 4(1)(6) = 1 > 0$$

The roots of the equation are real and distinct.

(2)

$$D = (-4)^2 - 4(1)(4) = 0$$

The roots of the equation are real and equal.

(3)

$$D = (3)^2 - 4(1)(5) = -11 < 0$$

The roots are complex and distinct.

(4)

$$D = (5)^2 - 4(1)(4) = 9$$

9 is perfect square of 3.

So that the roots are rational and distinct.

#### APPLICATION OF DISCRIMINANT TO COORDINATES GEOMETRY:

#### (i) Curve and x-axis:

The euqation of x-axis:

$$y = 0 \longrightarrow (1)$$

The equation of curve:

$$f(x) = y = ax^2 + bx + c = 0$$
,  $a > 0$   $\longrightarrow$  (2)

There are following three types of graphs of the curve in xy-plane.



To find the abscissas of point of intersection of the curve and x-axis, substituating y = 0 from equation (1) in equation (2), we get

$$ax^2 + bx + c = 0 \longrightarrow (3)$$

The discriminant of equation (3) tell us the behaviour of the curve with the x-axis.

- (a) The curve interest x-axis at two points  $\Leftrightarrow D > 0$  it means roots of the equation (3) are real and distinct.
- (b) The curve touches x-axis 

  D = 0
  it means roots of the equation (3) are real and equal.
- (c) The curve does not touch the x-axis 

  D 

  O

  it means roots of the equation (3) are complex and distinct.
- (d) The curve meets the x-axis  $\Leftrightarrow$  D  $\geq$  0 it means roots of the equation (3) are real distinct or equal.

#### (ii) Curve and Straight Line:

The equation of straight line:

$$y = mx + c' \longrightarrow (1)$$

The equation of curve:

$$y = ax^2 + bx + c \longrightarrow (2)$$

There are three possibilities (A), (B) and (C) as shown in the figure to draw the curve and straight line.









To find the abscissas of points of intersection of the curve and straight line, substituting y = 0 from equation (1) in equaiton (2), we get

$$ax^{2} + bx + c = mx + c'$$

$$ax^{2} + (b - m)x + (c - c') = 0 \longrightarrow (3)$$

$$A = a , B = b - m , C = c - c'$$

$$D = B^{2} - 4AC$$

- (a) Line intersects the curve  $\Leftrightarrow D > 0$
- (b) Line touches the curve  $\Leftrightarrow$  D = 0
- (c) Line does not touch the curve  $\Leftrightarrow D < 0$
- (d) Line meets the curve  $\Leftrightarrow D \ge 0$

| Wha                                                                       | t is the natur                                                                                      | e of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e roots of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | equati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ion x^2 - 5x - $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | + 6 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ?                                                                                                                             |  |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
| (a)                                                                       | irrational                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | real                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | equal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |  |
| (c)                                                                       | not real                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |  |
| Let D be the discriminant of the quadratic equation $ax^2 + bx + c = 0$ . |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |  |
| The                                                                       | roots of the e                                                                                      | quatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n are real if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |  |
| (a)                                                                       | D = 0                                                                                               | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $D \geq 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D > 0                                                                                                                         |  |
| The                                                                       | roots of a qua                                                                                      | adratic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | equation are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | not rea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | al if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |  |
| (a)                                                                       | D = 0                                                                                               | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\mathbf{D} \geq 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D > 0                                                                                                                         |  |
| The                                                                       | roots of a qua                                                                                      | adratic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | equation are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | real ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd distinct if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |  |
| (a)                                                                       | D > 0                                                                                               | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\mathbf{D} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | None                                                                                                                          |  |
| The                                                                       | $curve y = 2x^2$                                                                                    | -8x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | + b touches x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -axis,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |  |
| (a)                                                                       | b = 8                                                                                               | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $b \leq 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b > 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $b \ge 0$                                                                                                                     |  |
| The                                                                       | roots of the e                                                                                      | quatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n 2x <sup>2</sup> – mx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 5 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _, wher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e m is a                                                                                                                      |  |
| real                                                                      | number.                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |  |
| (a)                                                                       | equal                                                                                               | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | real                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | complex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | None                                                                                                                          |  |
| The                                                                       | roots of the e                                                                                      | quatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $n x^2 - 6x + m^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 2mk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | are equal if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $m^2-2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mk = ?                                                                                                                        |  |
| (a)                                                                       | 5                                                                                                   | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $-k^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                                                                                                             |  |
| Wha                                                                       | t is the least                                                                                      | integer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | added or sul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | otracte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d in the equa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ation x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $^2+9x=0,$                                                                                                                    |  |
| that                                                                      | the roots of t                                                                                      | he equ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ation must be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |  |
| (a)                                                                       | 20                                                                                                  | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                             |  |
| What is the least integer should be added that the roots of the equation  |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |  |
| $x^2$ –                                                                   | 6x = 0  must                                                                                        | be not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | real.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |  |
| (a)                                                                       | 9                                                                                                   | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                            |  |
| Wha                                                                       | What is the greatest integer should be added that the roots, except 0                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |  |
| and                                                                       | and $-8$ , of the equation $x^2 + 8x = 0$ must be real.                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |  |
| (a)                                                                       | 16                                                                                                  | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                                            |  |
| Wha                                                                       | it is the great                                                                                     | test in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | teger should                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | be add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | led that the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | roots, e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | except 0                                                                                                                      |  |
| and                                                                       | 7, of the equa                                                                                      | iton x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 - 7x = 0  mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ust be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | real and dist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | inct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               |  |
| (a)                                                                       | 13                                                                                                  | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                            |  |
| Wha                                                                       | t is the real n                                                                                     | umber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | should be ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lded in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the equaitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n 2x <sup>2</sup> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -5x=0                                                                                                                         |  |
| that                                                                      | the roots of t                                                                                      | he equ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ation must b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e equal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |  |
| (a)                                                                       | 25                                                                                                  | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{25}{16}$                                                                                                               |  |
|                                                                           | (a) (c) Let 1 The (a) The (a) The (a) The (a) The (a) Wha that (a) Wha and (a) Wha and (a) Wha that | (a) irrational (c) not real  Let D be the disc. The roots of the et (a) $D = 0$ The roots of a quate (a) $D = 0$ The roots of a quate (a) $D > 0$ The curve $y = 2x^2$ (a) $b = 8$ The roots of the eteral number.  (a) equal  The roots of the eteral number.  (a) equal  The roots of the eteral number.  (a) 5  What is the least that the roots of the eteral number.  (a) 20  What is the least $x^2 - 6x = 0$ must (a) 9  What is the great and $-8$ , of the equate (a) 16  What is the great and 7, of the equate (a) 13  What is the real in that the roots of the equate (a) 13 | (a) irrational (c) not real  Let D be the discriminal The roots of the equation (a) D = 0 (b)  The roots of a quadratic (a) D = 0 (b)  The roots of a quadratic (a) D > 0 (b)  The curve y = 2x² - 8x (a) b = 8 (b)  The roots of the equation real number. (a) equal (b)  The roots of the equation (a) 5 (b)  What is the least integer that the roots of the equation (a) 20 (b)  What is the least integer x² - 6x = 0 must be not (a) 9 (b)  What is the greatest integer x² - 6x = 0 must be not (a) 9 (b)  What is the greatest integer x² - 6x = 0 must be not (a) 9 (b)  What is the greatest integer x² - 6x = 0 must be not (a) 16 (b)  What is the greatest integer x² - 6x = 0 must be not (a) 16 (b)  What is the greatest integer x² - 6x = 0 must be not (a) 16 (b)  What is the greatest integer x² - 6x = 0 must be not (a) 16 (b)  What is the greatest integer x² - 6x = 0 must be not (a) 16 (b)  What is the greatest integer x² - 6x = 0 must be not (a) 16 (b)  What is the greatest integer x² - 6x = 0 must be not (a) 16 (b)  What is the greatest integer x² - 6x = 0 must be not (a) 16 (b) | (a) irrational (b) (c) not real (d)  Let D be the discriminant of the qual The roots of the equation are real if  (a) $D = 0$ (b) $D \ge 0$ The roots of a quadratic equation are  (a) $D = 0$ (b) $D < 0$ The roots of a quadratic equation are  (a) $D > 0$ (b) $D < 0$ The curve $y = 2x^2 - 8x + b$ touches $x = 0$ (a) $b = 8$ (b) $b \le 8$ The roots of the equation $2x^2 - mx$ real number.  (a) equal (b) real  The roots of the equation $x^2 - 6x + m^2$ (a) $b = 0$ (b) $b = 0$ What is the least integer added or sult that the roots of the equation must be $b = 0$ (a) $b = 0$ (b) $b = 0$ What is the least integer should be accompanied as $b = 0$ (a) $b = 0$ (b) $b = 0$ What is the greatest integer should and $b = 0$ (a) $b = 0$ (b) $b = 0$ What is the greatest integer should and $b = 0$ (a) $b = 0$ (b) $b = 0$ What is the greatest integer should and $b = 0$ (a) $b = 0$ (b) $b = 0$ What is the greatest integer should and $b = 0$ (a) $b = 0$ (b) $b = 0$ What is the greatest integer should and $b = 0$ (b) $b = 0$ What is the greatest integer should and $b = 0$ (a) $b = 0$ (b) $b = 0$ What is the greatest integer should and $b = 0$ (a) $b = 0$ (b) $b = 0$ What is the equation $b = 0$ (b) $b = 0$ The roots of the equation $b = 0$ (c) $b = 0$ The roots of $b = 0$ (d) $b = 0$ The roots of $b = 0$ (e) $b = 0$ The roots of $b = 0$ (for $b = 0$ ) $b = 0$ The roots of $b = 0$ (for $b = 0$ ) $b = 0$ The roots of $b = 0$ (for $b = 0$ ) $b = 0$ The roots of $b = 0$ (for $b = 0$ ) $b = 0$ The roots of $b = 0$ (for $b = 0$ ) $b = 0$ The roots of $b = 0$ (for $b = 0$ ) $b = 0$ The roots of $b = 0$ (for $b = 0$ ) $b = 0$ The roots of $b = 0$ (for $b = 0$ ) $b = 0$ The roots of $b = 0$ (for $b = 0$ ) $b = 0$ The roots of $b = 0$ (for $b = 0$ ) $b = 0$ The roots of $b = 0$ (for $b = 0$ ) $b = 0$ The roots of $b = 0$ (for $b = 0$ ) $b = 0$ The roots of $b = 0$ (for $b = 0$ ) $b = 0$ The roots of $b = 0$ (for $b = 0$ ) $b = 0$ The roots of $b = 0$ (for $b = 0$ ) $b = 0$ (for $b = 0$ ) $b = 0$ (for $b = 0$ ) $b = 0$ (for $b = 0$ | (a) irrational (b) real (c) not real (d) rational (e) not real (d) rational (e) not real (d) rational (e) the discriminant of the quadratic of the roots of the equation are real if (a) $D = 0$ (b) $D \ge 0$ (c) The roots of a quadratic equation are not real (a) $D = 0$ (b) $D < 0$ (c) The roots of a quadratic equation are real are (a) $D > 0$ (b) $D < 0$ (c) The curve $y = 2x^2 - 8x + b$ touches x-axis, (a) $b = 8$ (b) $b \le 8$ (c) The roots of the equation $2x^2 - mx - 5 = 0$ real number. (a) equal (b) real (c) The roots of the equation $x^2 - 6x + m^2 = 2mk$ (a) $5$ (b) $0$ (c) What is the least integer added or subtracted that the roots of the equation must be compared (a) $20$ (b) $21$ (c) What is the least integer should be added the $x^2 - 6x = 0$ must be not real. (a) $9$ (b) $8$ (c) What is the greatest integer should be added and $-8$ , of the equation $x^2 + 8x = 0$ must be (a) $16$ (b) $15$ (c) What is the greatest integer should be added and 7, of the equaiton $x^2 - 7x = 0$ must be (a) $13$ (b) $-13$ (c) What is the real number should be added in that the roots of the equation must be equal to $x^2 - 7x = 0$ must be (a) $x^2 - 6x = 0$ must be (b) $x^2 - 6x = 0$ must be (a) $x^2 - 6x = 0$ must be (b) $x^2 - 6x = 0$ must be (a) $x^2 - 6x = 0$ must be (b) $x^2 - 6x = 0$ must be (a) $x^2 - 6x = 0$ must be (a) $x^2 - 6x = 0$ must be (b) $x^2 - 6x = 0$ must be (a) $x^2 - 6x = 0$ must be (b) $x^2 - 6x = 0$ must be (a) $x^2 - 6x = 0$ must be (b) $x^2 - 6x = 0$ must be (a) $x^2 - 6x = 0$ must be (b) $x^2 - 6x = 0$ must be (a) $x^2 - 6x = 0$ must be (b) $x^2 - 6x = 0$ must be (a) $x^2 - 6x = 0$ must be (b) $x^2 - 6x = 0$ must be (a) $x^2 - 6x = 0$ must be (b) $x^2 - 6x = 0$ must be (a) $x^2 - 6x = 0$ must be (b) $x^2 - 6x = 0$ must be (a) $x^2 - 6x = 0$ must be (b) $x^2 - 6x = 0$ must be (a) $x^2 - 6x = 0$ must be (b) $x^2 - 6x = 0$ must be (c) $x^2 - $ | (a) irrational (b) real equal (c) not real (d) rational Let D be the discriminant of the quadratic equation ax The roots of the equation are real if  (a) $D = 0$ (b) $D \ge 0$ (c) $D < 0$ The roots of a quadratic equation are not real if  (a) $D = 0$ (b) $D < 0$ (c) $D \ge 0$ The roots of a quadratic equation are real and distinct if  (a) $D > 0$ (b) $D < 0$ (c) $D \ge 0$ The roots of a quadratic equation are real and distinct if  (a) $D > 0$ (b) $D < 0$ (c) $D = 0$ The curve $y = 2x^2 - 8x + b$ touches x-axis, if  (a) $b = 8$ (b) $b \le 8$ (c) $b > 8$ The roots of the equation $2x^2 - mx - 5 = 0$ are real number.  (a) equal (b) real (c) complex  The roots of the equation $x^2 - 6x + m^2 = 2mk$ are equal if  (a) $5$ (b) $0$ (c) $-k^2$ What is the least integer added or subtracted in the equation that the roots of the equation must be complex.  (a) $20$ (b) $21$ (c) $3$ What is the least integer should be added that the roots $x^2 - 6x = 0$ must be not real.  (a) $9$ (b) $8$ (c) $3^2$ What is the greatest integer should be added that the and $-8$ , of the equation $x^2 + 8x = 0$ must be real.  (a) $16$ (b) $15$ (c) $17$ What is the greatest integer should be added that the and $7$ , of the equation $x^2 - 7x = 0$ must be real and dist (a) $13$ (b) $-13$ (c) $12$ What is the real number should be added in the equation that the roots of the equation must be equal. | (c) not real (d) rational  Let D be the discriminant of the quadratic equation $ax^2 + bx - bx$ |  |

| (13) |        | _                         |          | -c = 0 have r   | eal roo | ots, c is an inte | eger, ti | ne least |
|------|--------|---------------------------|----------|-----------------|---------|-------------------|----------|----------|
|      | value  | e of c is                 |          |                 |         |                   |          |          |
|      | (a)    | 0                         | (b)      | -26             | (c)     | -25               | (d)      | -24      |
| (14) | The    | equation 2x <sup>2</sup>  | - 9x -   | -m = 0 have     | real ro | ots, where m      | is an i  | nteger.  |
|      | The    | least value of            | m is _   | •               |         |                   |          |          |
|      | (a)    | -11                       | (b)      | -10             | (c)     | -9                | (d) -    | -10.125  |
| (15) | The    | equation x <sup>2</sup> - | - kx +   | 25 = 0 have r   | eal roc | ots. The range    | of the   | values   |
|      | of k   | is                        |          |                 |         |                   |          |          |
|      | (a)    | $k \geq \pm 10$           |          |                 | (b)     | $k > \pm 10$      |          |          |
|      | (c)    | $k \leq -10, k$           | x ≥ 10   |                 | (d)     | k > 10            |          |          |
| (16) | The    | equation px <sup>2</sup>  | - 10x    | + p = 0 have    | real ar | nd distinct roo   | ots. Th  | e range  |
|      |        | e values of p             |          |                 |         |                   |          | Ü        |
|      |        | p < ± 5                   |          |                 | (b)     | p < 5             |          |          |
|      | (c)    | $-5 \le p \le 5$          | 5        |                 | (d)     | $-5$              |          |          |
| (17) | The    | line $y = 2$ is t         | angent   | to the curve    |         | _                 | where    | p is an  |
| , ,  |        | ger. The value            |          |                 | ,       | 1                 |          | •        |
|      |        | 16                        |          | A               | (c)     | 12                | (d)      | 49       |
| (18) | The    | line y = 1 interest       | ersects  | the curve y =   | x 2 -   | -4x + p + 1.      | The g    | reatest  |
|      |        | •                         |          | ere p is an int |         | •                 |          |          |
|      | (a)    |                           |          | 5               |         | 0                 | (d)      | 3        |
| (19) | The    | line y = -3 d             | loes no  | t meet the cu   | rve y = | $= x^2 + 6x + p$  | - 3,     | where p  |
|      | is an  | integer. The              | least v  | alue of p is _  |         | •                 |          |          |
|      |        | 10                        |          | 9               |         | 8                 | (d)      | 3        |
| (20) | The    | line y = 5 doe            | es not i | ntersect the o  | urve y  | $= x^2 - 4x -$    | - k + 5  | , where  |
|      | k is a | an integer. Th            | e great  | test value of k | is      |                   |          |          |
|      |        | -3                        |          | -5              |         |                   | (d)      | 4        |
|      |        |                           |          |                 |         |                   |          |          |
|      |        |                           |          |                 |         |                   |          |          |

#### SUM AND PRODUCT OF THE ROOTS

 $ax^2+bx+c=0$  is a quadratic equation. Let  $\alpha$  and  $\,\beta$  be the roots of this equation.

$$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \quad \text{and} \quad \beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

Sum of the Roots:

$$\alpha + \beta = \frac{-b + \sqrt{b^2 - 4ac}}{2a} + \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$
$$= -\frac{b}{a}$$

Product of the Roots:

$$\alpha\beta = \left(\frac{-b + \sqrt{b^2 - 4ac}}{2a}\right) \left(\frac{-b - \sqrt{b^2 - 4ac}}{2a}\right)$$
$$= \frac{b^2 - b^2 + 4ac}{4a^2}$$
$$= \frac{c}{a}$$

Example 2: Find the sum and product of the roots of the following equations:

$$x^2 - 5x + 6 = 0$$

- (1) without using formula.
- (2) using Formula.

Solution:-

$$x^2 - 5x + 6 = 0$$

$$a = 1$$
,  $b = -5$ ,  $c = 6$ 

(1) The roots of the equation are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(6)}}{2(1)}$$

$$= 2, 3$$

Let  $\alpha = 2$  and  $\beta = 3$ .

Find the sum and product of the roots of the following equations:

- (a) without using formula. (b) using formula
- (1)  $x^2 + 7x + 10 = 0$  (2)  $3x^2 7x 6 = 0$
- (3)  $x^2 9 = 0$  (4)  $2x^2 + 3x + 2 = 0$

Find the equation whose roots are given below.

- (5) 3 and 6 (6) -3/2 and 1/4
- (7) 2i and -2i (8)  $3 + \sqrt{5}$  and  $3 \sqrt{5}$
- (9) Find the equation whose roots are tripled the roots of the equation  $x^2 6x 16 = 0$ .
- (10) Find the equation whose roots are three times plus 5 the roots of the equation  $x^2 7x + 10 = 0$ .
- (11) Find the equation whose roots are four less than the roots of the equation  $5x^2 + 13x 6 = 0$ .
- (12) Find the equation whose one root is 12 and other root is five times minus four the first root.
- (13)  $\alpha$  and  $\beta$  are the roots of the equation ax  $^2$  + bx + c = 0; a  $\neq$  0. Find the equation whose roots are  $\alpha^2$  + 1 and  $\beta^2$  + 1.
- (14)  $\alpha$  and  $\beta$  are the roots of the equation  $x^2 + bx + c = 0$ . Find the equation whose roots are  $2\alpha^3 3$  and  $2\beta^3 3$ .

| (1)  | Wha                | t is the sun            | of two    | roots of t    | he equation  | $n 5x^2 - 8$            | x-4=0?                |           |
|------|--------------------|-------------------------|-----------|---------------|--------------|-------------------------|-----------------------|-----------|
|      | (a)                | $\frac{1}{2}$           | (b)       | <u>5</u><br>8 | (c) -        | <u>8</u><br>5           | (d) $\frac{4}{5}$     |           |
| (2)  | Wha                | t is the pro            | duct of t | wo roots      | of the equa  | tion 2y3 -              | $+11y^2+1$            | 2y = 0?   |
|      | (a)                | None                    | (b)       | 6             | (c)          | -6                      | (d)                   | -11/2     |
| (3)  | Wha                | t is the sun            | of the r  | oots of th    | ne equation  | $2y^3 + 4y$             | $x^2 - 16y =$         | 0.        |
|      | (a)                | None                    | (b)       | -8            | (c)          | 2                       | (d)                   | -2        |
| (4)  | Wha                | t is the pro            | duct of t | wo roots      | of the equa  | ition 3y <sup>3</sup> - | $-7y^2-6y=$           | = 0?      |
|      | (a)                | -2                      | (b)       | 7/3           | (c)          | 0                       | (d)                   | None      |
| (5)  | Wha                | t is the pro            | duct of t | wo roots      | of the equa  | tion 2y4                | $+29y^2+5$            | 0 = 0?    |
|      | (a)                | 50                      | (b)       | -5            | (c)          | 25                      | (d)                   | -29/2     |
| (6)  | Wha                | t is the pro            | duct of t | wo roots      | of the equa  | ition y <sup>4</sup> –  | $5y^2 + 9 =$          | 0?        |
|      | (a)                | -3                      | (b)       | 9             | (c)          | 5                       | (d)                   | None      |
| (7)  |                    | product of 6  5kx+k=2 i |           |               |              | the equat               | ion                   |           |
|      | (a)                |                         |           |               | (c)          | 16                      | (4)                   | 20        |
| (9)  | 1,300              | square of the           |           |               |              |                         |                       |           |
| (8)  |                    | . What is th            |           |               | ts of the et | quation 32              | X - OKX T             | 10 – 0    |
|      |                    |                         | (b)       |               | (c)          | $\sqrt{18}$             | (d)-                  | 6         |
| (9)  |                    | sum of the              |           |               |              |                         |                       |           |
|      |                    | s the produ             |           |               |              |                         |                       |           |
|      | (a)                |                         | (b)       |               | (c)          |                         | (d)                   | 6         |
| (10) | The                | product of              | the roots | of the e      | quation 2x   | $^{2} + 6x +$           |                       |           |
| ¥    | 10 P. C. C. C. CO. | quare of th             |           |               |              |                         |                       |           |
|      |                    | -6                      |           |               | (c)          |                         | (d)                   | 18        |
| (11) | The                | product of              | the roots | of the ed     | quation 3x   | $^{2} - 12x +$          | $p = 6$ is $\epsilon$ | equal to  |
|      | the s              | quare root              | of sum o  | f the roo     | ts. What is  | the value               | of p?                 |           |
|      | (a)                | 12                      | (b)       | 6             | (c)          | 18                      | (d)                   | 54        |
| (12) | α and              | d $\beta$ are the       |           |               |              |                         |                       | at is the |
|      | value              | e of k if squ<br>oots?  |           |               |              |                         |                       |           |
|      | (a)                | 15                      | (b)       | -5            | (c)          | -25                     | (d)                   | None      |
| (13) |                    | t is the sun            |           |               |              |                         |                       |           |

 $3x^4 - 12x^2 + 5 = 0$ ?

- (a) -16
- (b) 2
- (c) 16
- (d) 4

(14) What is the product of the square of the root of the equation

 $6x^4 - 5x^2 - 30 = 0$ ?

- (a) 25
- (b) -5
- (c) -25
- (d)  $\frac{5}{6}$

(15) What is the equation whose roots are 3i and 5i?

- (a)  $x^2 8x 15 = 0$
- (b)  $x^2 + 8ix 15 = 0$

(c)  $x^2 - 15x + 8 = 0$ 

(d) None

(16) What is the equation whose roots are three times the roots of the equation (x - 2) (x - 5) = 0?

- (a)  $x^2 21x + 30 = 0$
- (b)  $x^2 7x + 10 = 0$
- (c)  $x^2 21x + 90 = 0$
- (d)  $x^2 81 = 0$

(17) The sum and product of the roots of the equation  $x^2 + bx + c = 0$  are 18 and -115 respectively. What are the values of b and c?

(a) 18, 115

(b) 115, -18

(c) 18, -115

(d) -18, -115

(18) The sum of the roots of the equation  $x^2 - 5x + q = 0$  is half the product of the roots of the equation  $5x^2 + bx + m = 0$ . What is the value of m?

- (a) 25
- (b) 50
- (c) 12.5
- (d) q

#### Chapter 8C

#### **CUBIC EQUATIONS**

#### **CUBE ROOTS OF AN INTEGER:**

#### (1) Cube Roots of 1:

Let x be the cube root of 1.

$$x^{3} = 1$$

$$x^{3} - 1 = 0$$

$$(x - 1)(x^{2} + x + 1) = 0$$
either  $x - 1 = 0$  or  $x^{2} + x + 1 = 0$ 

$$\Rightarrow x = 1 \quad \text{or} \quad x = \frac{-1 + \sqrt{3}i}{2}, \frac{-1 - \sqrt{3}i}{2}$$

$$x = \omega, \omega^{2}$$
where  $\omega = \frac{-1 + \sqrt{3}i}{2}$  and  $\omega^{2} = \frac{-1 - \sqrt{3}i}{2}$ 

All cube roots of 1 are 1,  $\omega$ ,  $\omega^2$ .

#### **Properties of** $\omega$ :

(i) 
$$\omega^3 = 1$$

Proof:-

$$\omega^{3} = \omega \cdot \omega^{2}$$

$$= \left(\frac{-1 + \sqrt{3}i}{2}\right) \left(\frac{-1 - \sqrt{3}i}{2}\right)$$

$$= \frac{1 + 3}{4}$$

$$= 1$$

If  $\omega = \frac{-1 + \sqrt{3} i}{2}$  ( $\omega$  is cube root of unity), then prove that

(1) 
$$\omega^{25} + \omega^{12} = -\omega^2$$

(1) 
$$\omega^{25} + \omega^{12} = -\omega^2$$
 (2)  $\omega^{26} + \omega^{48} + \omega^{37} = 0$  (3)  $\omega^{38} + \omega^{13} = -1$  (4)  $\omega^{6} + \omega^{8} = -\omega$ 

(3) 
$$\omega^{38} + \omega^{13} = -1$$

$$(4) \qquad \omega^6 + \omega^8 = -\omega$$

(5) 
$$(1 + \omega^2) (\omega^5 + \omega^{14}) = -2$$
 (6)  $(\omega^2 + \omega^{12}) (\omega^{10} + \omega^{23}) = \omega$ 

$$(\omega^2 + \omega^{12}) (\omega^{10} + \omega^{23}) = \omega$$

(7) 
$$\frac{\omega^7 + \omega^8}{1 + \omega} = \omega$$
 (8)  $\frac{\omega^{11} + \omega^{12}}{\omega^6 + \omega^{10}} = \omega^2$ 

(8) 
$$\frac{\omega^{11} + \omega^{12}}{\omega^6 + \omega^{10}} = \omega^2$$

Find all cube roots in terms of w (cube root of unity) of the following:

$$(10) -8$$

$$(12) -64$$

(ω is cube root of 1), then

- $\omega^{12} + \omega^{15} = ?$ (1)
  - (a)  $\omega^{27}$
- (b)
- (c) ω
- (d)

- $\omega^5 + \omega^{10} + \omega^{15} = ?$ (2)
  - (a)  $\omega$  (b)
- (c) 0
- (d) 1

- $\omega^5 \omega^{21} \omega^{31} = ?$ (3)
  - (a)  $2\omega$
- $2\omega^2$ (b)
- (c)
- (d)

- $(-\omega^7 \omega^8) \cdot (\omega + \omega^2) = ?$ (4)
  - (a) -1 <u>.</u> (b) 1
- (c)
- $\omega^2$ (d)

1

- $\{\omega + (\omega^{10} \div \omega^{14} + \omega^{14})^3\} = ?$ (5)

  - (a) 0 (b)  $7 \omega^2$
- (c)  $\omega + 1/2 \omega^2$  (d)

- $\omega^5 \div \omega^7 \div \omega^2 \times \omega^{11} + \omega = ?$ (6)
  - (a) 2
- (b)  $2\omega^2$
- (c)  $2\omega$
- (d)

- $6\omega^4 2\omega^4 \times \omega^2 \div \omega 2 = ?$ (7)

  - (a)  $8\omega$  (b)  $\omega + 3$
- (c)
- (d)

- $(\omega + 1)^{10} \div (1 + \omega^2)^6 \times (-\omega \omega^2)^8 = ?$ (8)
  - (a) 1
- (b) 0
- (c)
- (d)

- (9)  $(1+\omega)^2 \div (1+\omega^2)^8 - (1+\omega^{32})^5 = ?$ 
  - (a)  $5\omega + 1$
- (b)  $3\omega$
- (c)  $2\omega^2$
- (d)

- $(\omega^{26} + \omega^{37})^8 \div (\omega^6)^7 = ?$ (10)
  - (a) 0 (b)
- $\omega$
- $\omega^2$ (c)
- (d) 1

#### **ROOTS OF A CUBIC EQUATION**

First root of the cubic equation  $a_3x^3 + a_2x^2 + a_1x + a_0 = 0$  can be found by factor theorem and then for other roots of the equation any method of the following can be used.

- (1) Long Division.
- (2) Synthetic Division Method
- (3) Equating the Coefficients.

**Example 2:** Find all the roots of the cubic equation  $2x^3 + x^2 - 6x - 4 = 0$ .

#### Solution:-

Let, 
$$f(x) = 2x^3 + x^2 - 8x - 4 = 0$$

There is one variation of sign.

Therefore, there is only one positive real root. Now,

$$f(1) = -7 \neq 0$$
  
$$f(2) = 0$$

According to factor theorem 2 is a root. For other two roots we use above three method one by one.

#### (1) Long Division:

x - 2 is a factor.

$$2x^{2} + 5x + 2 \rightarrow quotient$$

$$x - 2 \overline{\smash)2x^{3} + x^{2} - 8x - 4} \rightarrow dividend$$

$$\underline{\pm 2x^{3} \mp 4x^{2}}$$

$$5x^{2} - 8x - 4$$

$$\underline{\pm 5x^{2} \mp 10x}$$

$$2x - 4$$

$$\underline{\pm 2x \mp 4}$$

$$0 \rightarrow remainder$$

$$=> (x - 2) (2x^{2} + 5x + 2) = 0$$

$$either \quad x - 2 = 0 \quad \text{or} \quad 2x^{2} + 5x + 2 = 0$$

$$x = 2 \quad \text{or} \quad x = -2, \frac{-1}{2}$$

The three cube roots are -2, -1/2 and 2.

Find all roots of the following equations. Using any of the following method:

- (i) Synthetic division method
- (ii) Equating the coefficients
- (iii) Long division method.
- (1)  $x^3 4x^2 25x + 28 = 0$  (2)  $x^3 10x^2 + 19x + 30 = 0$
- (3)  $x^3 4x^2 + 5x 20 = 0$  (4)  $x^3 14x^2 + 28x + 120 = 0$
- (5)  $x^3 12x^2 + 41x 42 = 0$  (6)  $x^3 6x^2 + 9x 54 = 0$
- (7) One factor of the cubic expression  $x^3 + 6x^2 85x 450$  is x + 5. Find other two roots.
- (8) One root of the cubic equation  $x^3 32x^2 + 260x 400$  is 2. Find other two roots.
- (9) One quadratic factor of the expression  $x^4 6x^3 + 17x^2 + 24x 24$  is  $x^2 + x 2$ . Find other quadratic factor.
- (10) Find all the roots if two roots of the equation  $x^4 + 4x^3 182x^2 186x + 360 = 0$  are 1 and -2.
- (11) Using synthetic division method find the quotient and remainder when the polynomial  $x^4 3x^3 + 2x^2 5x + 7$  is divided by x 2.
- (12) When  $x^3 + px^2 3x 30$  is divided by x 3 the remainder is 42. Using synthetic division method, find the value of p.
- (13) The equation  $x^3 + 5x^2 17x 21 = 0$  has a root -7. Find the other roots, using synthetic division method.
- (14) The divisor and dividend are x 2 and  $2x^5 3x^3 + 2x^2 7$  respectively. Using synthetic division method, find the remainder and quotient.
- (15) When the expression  $3x^4 px^2 2x + 9$  is divided by x 1, the remainder is 5. Find the value of p, using synthetic division method.
- (16) -2 and -3 are two factors of a polynomial equation  $x^4 + 11x^3 + 41x^2 + 61x + 30 = 0$ . Find other two roots, using synthetic division method.
- (17)  $x^2 1$  is a quadratic factor of the expression  $x^4 + 9x^3 + 13x^2 9x 14$ . Find other quadratic factor, using synthetic division method.

- (1) What is the quotient if  $x^3 2x^2 + 5x 7$  is divided by x 1?
  - (a)  $x^2 + x 1$

(b)  $x^2 - x + 4$ 

(c)  $x^2 - x + 1$ 

- (d)  $3x^2 + x + 1$
- (2) What is the quotient if  $x^3 5x^2 + 12$  is divided by x 2?
  - (a)  $x^2 3x$

- (b) x 3
- (c)  $x^2 3x 6$
- (d)  $x^2 + 2x 7$
- (3) What is the quotient if  $2x^3 8x + 5$  is divided by x + 1?
  - (a)  $2x^2 10x$

- (b)  $2x^2 2x 6$
- (c)  $2x^2 + 2x 6$
- (d)  $2x^2 10$
- (4) What is the quotient if the expression  $3x^3 2x^2 + 7$  is divided by x 2?
  - (a)  $3x^2 + 4x + 8$
- (b)  $3x^2 + 4x + 15$

(c)  $3x^2 + 4x$ 

- (d)  $3x^2 + 4x + 8$
- (5) The expression  $x^3 5$  is divided by (x + 1). What is the quotient?
  - (a)  $x^2 6x$

(b)  $x^2 - 6$ 

(c)  $x^2 + x + 1$ 

(d)  $x^2 - x + 1$ 

#### Chapter 9

# FACTOR AND REMAINDER THEOREMS

#### **FACTOR THEOREM**

(x - a) is a factor of an expression P(x) iff p(a) = 0.

Proof:

P(x) can be written as

$$P(x) = (x - a) Q(x) + R$$

According to remainder theorem R = P(a)

$$P(x) = (x - a) Q(x) + P(a)$$

If (x - a) is a factor of P(x), the remainder must be zero.

$$R = 0$$

$$P(a)=0$$

**Example 1:** Show that (x - 2) is a factor of  $P(x) = x^2 - 5x + 6$ .

Solution:-

$$x = 2 = P(2) = 2^2 - 5(2) + 6 = 0$$

By factor theorem (x - 2) is a factor of P(x).

**Example 2:** Prove that 3 is a root of the equation  $x^2 - 5x + 6 = 0$ .

Solution:-

Let

$$P(x) = x^2 - 5x + 6$$
  
 $x = 3 = P(3) = 3^2 - 5(3) + 6 = 0$ 

Therefore, 3 is a root of the equation.

**Example 3:** Find the value of k if 5 is a root of the equation  $x^2 - 7x + k = 0$ .

Solution:-

Let 
$$P(x) = x^2 - 7x + k = 0$$

Since 5 is a root of the equation.

$$P(5) = 0$$

$$5^2 - 7(5) + k = 0$$

$$k = 10$$

#### REMAINDER THEOREM

P(a) is the remainder if the expression P(x) is divided by x - a.

**Note:** When a polynomial is divided by linear divisor x - a, the remainder can be found by remainder theorem. But we can not find quotient by this theorem.

Proof:

Case 1: (x - a) is a linear divisor:

dividend = divisor × quotient + remainder

$$P(x) = (x - a) \cdot Q(x) + R$$

Substituting x = a

$$P(a) = 0 \cdot Q(x) + R = R$$
$$R = P(a)$$

Case 2: (bx - a) is a linear divisor:

$$P(x) = (bx - a) \cdot Q(x) + R$$
$$= b\left(x - \frac{a}{b}\right) \cdot Q(x) + R$$

By substituting  $x = \frac{a}{b}$ , we get

$$R = P\left(\frac{a}{b}\right)$$

Note: Remainder and quotient can also be found by the following methods.

- (1) Long Division
- (2) Synthetic Division Method
- **Example 4:** The expression  $2x^3 3x^2 + x + 7$  is divided by x 3. Find the remainder.

Solution:-



- (2)  $5x^3 + 2x^2 6x 7$  is divided by x + 2. Find the remainder.
- (3) Find the remainder if  $2x^4 6x^2 + 6x + 9$  is divided by 2x + 3.
- (4) Prove that  $x^4 6x^3 + 17x^2 + 24x 24$  is exactly divisible by x 3.
- (5) Is (x + 2) a factor of  $x^3 + 14x^2 3x + 1$ .
- (6) Is (x 6) a factor of  $x^3 14x^2 + 28x + 120$ .
- (7) Is 8 a root of  $x^3 16x^2 + 71x 56 = 0$ .
- (8) Is 5 a root of  $2x^4 3x + 9 = 0$ .

(a)

3

- (9) When the expression  $2x^3 bx^2 + 2x + 3$  is divided by x 2, the remainder is 3. Find the value of b.
- (10) (2x 1) is a factor of the polynomial  $2x^3 + px^2 + 17x 12$ . Find the value of p.
- (11)  $\frac{2}{5}$  is a root of the equation  $5x^3 7x^2 + mx + 12 = 0$ . Find the value of m.
- (12) The polynomial  $x^4 6x^3 + px^2 + qx 24$  is exactly divisible by (x + 2) but leaves a remainder -24 when divided by (x + 1). Find the value of p and q.
- (13) The expression  $x^3 + ax^2 + 41x b$  leaves a remainder -180 when divided by x + 2 but exactly divisible by (x 2). Find the value of a and b.

#### M.C.Q's C-9

| (1) | $2x^5$ -     | $-3x^3+2x$            | c – 1 is div | vided by $x +$ | 1. Wha | t is the re | mainder.    |          |
|-----|--------------|-----------------------|--------------|----------------|--------|-------------|-------------|----------|
|     | (a)          | 0                     | (b)          | 3              | (c)    | -5          | (d)         | -2       |
| (2) |              | $2x^4 - 3$ alue of k? |              | divided by x   | - 2, t | he remain   | der is 8. V | Vhat is  |
|     | (a)          | -2                    | (b)          | 5              | (c)    | -6          | (d)         | -14/9    |
| (3) | 4 is t of p? |                       | the equat    | $x^3 - 4x^2$   | 2 + px | -20 = 0.    | What is th  | ne value |
|     | (a)          | 2                     | (b)          | 5              | (c)    | -37         | (d)         | 6        |

(4) The expression  $x^3 + px^2 - 25x + 28$  is divisible by x - 1. What is the value of p?

(c)

(d)

-52

(b)

| (5)  | The                                                                   | expression x    | $^4 + kx^3$ | $+9x^2+4x$       | - 12 is       | exactly divisi     | ble by       | $(x-2)^2$ .  |
|------|-----------------------------------------------------------------------|-----------------|-------------|------------------|---------------|--------------------|--------------|--------------|
|      | Wha                                                                   | t is the value  | of k?       |                  |               |                    |              |              |
|      | (a)                                                                   | 6               | (b)         | -6               | (c)           | 7                  | (d)          | None         |
| (6)  | The                                                                   | expression x    | $4 + 4x^3$  | $-mx^2-16x$      | - <b>12</b> i | is exactly divi    | sible b      | $y x^2 - 4.$ |
|      | Wha                                                                   | t is the value  | of m?       |                  |               |                    |              |              |
|      | (a)                                                                   | 3               | (b)         | 1                | (c)           | 2                  | (d)          | -5           |
| (7)  | The                                                                   | expression      | $x^4 + k$   | $x^3 - 3x^2 + 3$ | 11x – 6       | is exactly di      | visible      | by           |
|      | $x^2$ –                                                               | 2x + 1. Wha     | t is the    | value of k?      |               |                    |              |              |
|      | (a)                                                                   | 11              | (b)         | 7                | (c)           | -3                 | (d)          | None         |
| (8)  | Wha                                                                   | t number sho    | ould be     | added to the     | expres        | ssion $x^3 + 4x^3$ | $^{2} + x -$ | - 8, that    |
|      | the r                                                                 | emainder mu     | ıst be 5    | , when the ex    | pressi        | on is divided      | by x -       | 1.           |
|      | (a)                                                                   | -2              | (b)         | 7                | (c)           | -3                 | (d)          | 5            |
| (9)  | Whe                                                                   | n the express   | $s 2x^2 +$  | 3x + 9 is div    | vided b       | by $x - k$ , the r | emain        | der is 9.    |
|      | Wha                                                                   | t is the value  | of k?       |                  |               |                    |              |              |
|      | (a)                                                                   | $-\frac{3}{2}$  | (b)         | -5               | (c)           | $^{1}/_{5}$        | (d)          | $^{2}/_{7}$  |
| (10) | What number should be added to the equation $x^3 - 5x^2 + 7x + 2 = 0$ |                 |             |                  |               |                    |              |              |
|      | that                                                                  | 2 must be a r   | oot of      | the equation?    | •             |                    |              |              |
|      | (a)                                                                   | 8               | (b)         | 4                | (c)           | -4                 | (d)          | none         |
| (11) | Wha                                                                   | t number sho    | ould be     | subtracted fr    | om the        | expression         |              |              |
|      | $x^3 +$                                                               | $2x^2-7x-5$     | that x      | - 2 must be      | a facto       | or of the expre    | ession?      | •            |
|      | (a)                                                                   | -3              | (b)         | 3                | (c)           | 5                  | (d)          | 2            |
| (12) | Wha                                                                   | t number sh     | ould be     | added to the     | e expre       | ssion $2x^3 - 3$   | $3x^2 + 2$   | 2x + 10      |
|      | that                                                                  | $(x + 1)^2$ mus | t be the    | e factor of the  | e expre       | ssion?             |              |              |
|      | (a)                                                                   | -11             | (b)         | -1               | (c)           | 5                  | (d)          | -3           |
|      |                                                                       |                 |             |                  |               |                    |              |              |

#### Chapter 10

#### SYSTEM OF EQUATIONS OF TWO VARIABLES

The methods of solving the system of two variables polynomial equations of degree one or two are discussed in this chapter. These equations can be solved by the following methods.

(1) Elimination method

(2) Substitution Method

**Example 1:** Solve the system of equations using elimination method.

$$2x - 5y = 1$$
 and  $3x + 4y = -10$ 

Solution:-

$$2x - 5y = 1 \longrightarrow (1)$$

$$3x + 4y = -10 \longrightarrow (2)$$

To eliminate y, multiply equation (1) by 4 and equation (2) by 5 and add.

$$8x - 20y = 4$$

$$15x + 20y = -50$$

$$23x = -46$$

$$x = -2$$

By substituting x = -2 in equation (1), we get

$$y = -1$$

**Example 2:** Solve the system of equations using substitution method.

$$y - x = 4$$
 and  $12x - 2y = 2$ 

Solution:-

$$y - x = 4$$

$$y = x + 4 \longrightarrow (1)$$

$$12x - 2y = 2 \longrightarrow (2)$$

Substitute the value of y from equation (1) in equation (2)

$$12x - 2(x + 4) = 2 = x = 1$$

Substitute x = 1 in equation (1)

$$y = 1 + 4 = y = 5$$

**Example 3:** Solve the system of equations  $x^2 - 3xy + y^2 = 0$  and  $2x^2 - y^2 = 9$ . **Solution:** 

$$x^{2} - 3xy + y^{2} = 0 \longrightarrow (1)$$
$$2x^{2} - y^{2} = 9 \longrightarrow (2)$$

By factorizing equation (1), we get

$$(x-y) (x-2y)=0$$

 $x - y = 0 \qquad \qquad \text{or} \quad x - 2y = 0$ either

$$x = y \longrightarrow (3)$$
 ,  $x = 2y \longrightarrow (4)$ 

Case 1: x = y

By substituting x = y in equation (2), we get

$$y^2 = 9 = y = \pm 3$$

when y = 3, equation (3) gives x = 3

when y = -3, equation (3) gives x = -3

The value of (x, y) is (3, 3) or (-3, -3).

x = 2y(4) Case 2:

By substituti ng in equation (2), we get  $y = \pm \frac{3\sqrt{7}}{7}$ .

when 
$$y = \frac{3\sqrt{7}}{7}$$
, equation (4) gives  $x = \frac{6\sqrt{7}}{7}$ 

when 
$$y = \frac{-3\sqrt{7}}{7}$$
, equation (4) gives  $x = \frac{-6\sqrt{7}}{7}$ 

The value of (x, y) is 
$$\left(\frac{3\sqrt{7}}{7}, \frac{6\sqrt{7}}{7}\right)$$
 or  $\left(\frac{-3\sqrt{7}}{7}, \frac{-6\sqrt{7}}{7}\right)$ .

Since all four values of (x, y) satisfy equation (2). So the solution set is

$$\left\{ (3,3), (-3,-3), \left(\frac{3\sqrt{7}}{7}, \frac{6\sqrt{7}}{7}\right), \left(\frac{-3\sqrt{7}}{7}, \frac{-6\sqrt{7}}{7}\right) \right\}$$

Example 4: The age of Arif is twice the age of Kashif plus 5. The difference of their ages is 7. What are their ages.

Solution:-

Let Arifs age = xand Kashif's age = y

$$x = 2y + 5 \longrightarrow (1)$$

and 
$$x - y = 7 \longrightarrow (2)$$

By solving equation (1) and (2), we get

$$x = 9$$
 and  $y = 2$ 

- The sum of the squares of two numbers is 617 and the difference of their squares is 105. Find the numbers.
- (25) Find the two integers. The sum of twice first integer is increased by 2 and five more than twice second integer is 55. The difference of the squares of the numbers is 144.
- Ali sold 50 glasses of sold drinks. Lamonada sold for Ps 20 per glass

| (26) | and orangeade for Rs.25 per glass. The income is Rs.1165. How many                                                                                        |                            |                         |                  |             |            |                                |            |  |  |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------|------------------|-------------|------------|--------------------------------|------------|--|--|--|--|--|
|      | glass                                                                                                                                                     | ses of each                | drink we                | re sold?         |             |            |                                |            |  |  |  |  |  |
| (27) | The sum of the surface areas of two spheres is $1348\pi$ cm <sup>2</sup> and the sum of their radii is 25 cm. Find the sum of the volumes of the spheres. |                            |                         |                  |             |            |                                |            |  |  |  |  |  |
| (28) | : [[[[[[[] [] [[] [[] [] [[] [] [] [] []                                                                                                                  |                            |                         |                  |             |            |                                |            |  |  |  |  |  |
|      |                                                                                                                                                           |                            | M.                      | C.Q's            | C-1         | 0          |                                |            |  |  |  |  |  |
| (1)  | Mary buys some mango. Anne buys 5 less than twice the mango as Mary buys. How many mangoes Anne buys if sum of the mangoes is 7.                          |                            |                         |                  |             |            |                                |            |  |  |  |  |  |
|      | "Track death"                                                                                                                                             |                            |                         |                  |             |            |                                | es is 7.   |  |  |  |  |  |
|      | (a)                                                                                                                                                       | 3                          | (b)                     | 4                | (c)         | 5          | (d)                            | 2          |  |  |  |  |  |
| (2)  | decr                                                                                                                                                      |                            | 2. The qu<br>oes Ali wa | otient of        |             | Babar's    | imes Baba<br>walk is 2.<br>(d) |            |  |  |  |  |  |
| (2)  |                                                                                                                                                           |                            | A 30 A 30 A 30 A 30 A   |                  |             |            | X to the second second         |            |  |  |  |  |  |
| (3)  |                                                                                                                                                           | age of Tal                 |                         |                  |             | n pius 5.  | The differ                     | rence of   |  |  |  |  |  |
|      | (a)                                                                                                                                                       | 2                          | (b)                     | 12               | (c)         | 29         | (d)                            | 13         |  |  |  |  |  |
| (4)  | Ali r                                                                                                                                                     | ninus thre<br>er now?      | e and the               | sum of th        | eir ages is | 49. Wha    | is twice that is the age       | e of Ali's |  |  |  |  |  |
| 25   |                                                                                                                                                           | 18                         | (b)                     | 20               | (c)         |            | (d)                            | 33         |  |  |  |  |  |
| (5)  | time<br>the a                                                                                                                                             | es her age<br>age of her f | less two a              | and the di<br>v? | ifference   | of their a | her father<br>ges is 29.       | What is    |  |  |  |  |  |
|      | (a)                                                                                                                                                       | 32                         | (b)                     | 37               | (c)         | 13         | (d)                            | 18         |  |  |  |  |  |
| (6)  |                                                                                                                                                           | s five years               |                         |                  |             |            | ounger than<br>7.              | n Kashif.  |  |  |  |  |  |
|      | (a)                                                                                                                                                       | 20                         | (b)                     | 12               | (c)         | 10         | (d)                            | 15         |  |  |  |  |  |
|      |                                                                                                                                                           |                            |                         |                  | \ -/        |            |                                |            |  |  |  |  |  |

| (7)  | Six years times Ahsan's age will be three less than three times the age |              |          |                |         |                |         |      |  |  |
|------|-------------------------------------------------------------------------|--------------|----------|----------------|---------|----------------|---------|------|--|--|
|      | of Asghar. If Ahsan is 15 years old now. What is the age of Asgh ar?    |              |          |                |         |                |         |      |  |  |
|      | (a)                                                                     | 3            | (b)      | 7              | (c)     | 12             | (d)     | 2    |  |  |
| (8)  | The sum of the ages of Ali and Talha is 48. Three years ago Ali is 50   |              |          |                |         |                |         |      |  |  |
|      | minus two times the age of Talha. What is the age of Ali now?           |              |          |                |         |                |         |      |  |  |
|      | (a)                                                                     | 24           | (b)      | 32             | (c)     | 36             | (d)     | 40   |  |  |
| (9)  | Mrs. Ali buys 45 fruits for Rs.160. He buys two types of fruits orange  |              |          |                |         |                |         |      |  |  |
|      | and banana. She boys orange and banana Rs.48 and Rs.36 per dozen        |              |          |                |         |                |         |      |  |  |
|      | respectively. What are the number of banana?                            |              |          |                |         |                |         |      |  |  |
|      | (a)                                                                     | 16           | (b)      | 25             | (c)     | 20             | (d)     | 30   |  |  |
| (10) | In a cricket match 200 runs are made by 44 fours and sixes. What are    |              |          |                |         |                |         |      |  |  |
|      | the number of sixes?                                                    |              |          |                |         |                |         |      |  |  |
|      | (a)                                                                     | 16           | (b)      | 29             | (c)     | 12             | (d)     | 14   |  |  |
|      | [For                                                                    | more problem | is see " | linear equatio | on of o | ne variable" a | nd "rat | e"]. |  |  |
|      |                                                                         |              |          |                |         |                |         |      |  |  |

169

# COLLEGE MATHEMATICS WITH M.C.Q's

by

# M. MAQSOOD ALI

Lecturer in Mathematics
Govt. Degree Science & Commerce
College Landhi Korangi