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IMPROPER INTEGRAL 

        The definite integral � ������  	� is said to be 

improper integral if at least one limit is infinite. This type 

of improper integral is called improper integral of first 

kind. 

        There is another type of improper integral in which 

the limit of integration are finite but the integrand � 

becomes infinite at some points on the interval of 

integration. This type of improper integral is called 

improper integral of second kind. 

IMPROPER INTEGRAL OF FIRST KIND: 
CASE - I: 

       The improper integral of first kind in which upper 

limit of the integration is infinite is defined as 


  ������
�

 	� 
  lim� � �� 
  �����
�

 	�  
        The improper integral is said to be convergent if the 

limit on the right side exist, otherwise it is said to be 

divergent. 

Example 10.24:                


 800 	���√�� � 16
��
�


? 

 Solution: 

                    


 800 	���√�� � 16
��
�


 800 lim���� 
  	���√�� � 16
�

�
 

                                            

                             
 4003 lim���� �√�� � 16� ��
�
 

                                            

                             
 4003 lim����  √!� � 10! � 35# 

                                                 
 4003 lim���� $!! . &1 � 16/!� � 35( 
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 4003 lim���� $&1 � 16/!� � 35( 

                  
 4003 $1 � 35( 

                  
 1603  

 

CASE - II: 

       The improper integral of first kind in which lower limit 

is infinite is defined as 


      �����
)�

 	� 
  lim� � )� 
      �����
�

 	�  
        The improper integral is said to be convergent if the 

limit on the right side exist, otherwise it is said to be 

divergent. 

 

 

 

 

 

 

 

 

 

    
 800 	���√�� � 16
��
�


 8003 �√�� � 16� ��
��

 

                                   
 4003 *�� . &1 � 16/��+�
��

 

                                    
 4003 $∞∞ � 35( 

WHY   � � -∞  ,   WHY NOT  � 
 -∞    
Explanation: If � 
 -∞,  then  

                           

                            

    

   
��  is indeterminate form, so � � -∞. 

 

 
 

 

 

                Graph of the function 

 ���� 
 800 ��√�� � 16 

                  from 5 to - ∞. 
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Example 10.25: 

                 


 500 	�&��� � 9�2
)�

)�

? 
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                  Graph of the function 

 

���� 
 500 	�&��� � 9�2 

                  from �∞ to � 5. 
 

 

 

 

 



www.mathbunch.com                                                       M. MAQSOOD ALI 

 

227 

 

CASE - III: 

      The improper integral of first kind in which both the 

limits of integration are not finite is defined as 


  �����
)�

 	� 
  
  �����
)�

 	� - 
  �����
)�

 	� 

                       
 lim3 � )� 
  �����
3

 	� - lim4 � � 
  ����4
�

 	�   
     The improper integral is said to be convergent if both 

limit of right side exist, otherwise it is said to be 

divergent. 

 

Example 10.26:                  

             
 900��� - 25��  	��� 
)�


? 

Solution: 

                                                                                                                 


 900��� - 25��  	��� 
)�

 


 900 6 
 	���� - 25�� - 
 	���� - 25�� �� 
7

7 
)�

8 

                  

 
 900 6 lim3�)� 
 	���� - 25�� -7 
3

lim4��� 
 	���� - 25�� 4 
7

8  � �1� 

 

 

 

              


 lim3�)� 
 	���� - 25��
7 

3
 

              


 1250 lim3�)� 9tan)< �5 - 5��� - 25=3
7
 

 

              


 lim4��� 
 	���� - 25��
4 

7
 

             


 1250 lim4��� 9tan)< �5 - 5��� - 25=7
4
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 10.87 

 

                The graph of the curve   ���� 
 900��� - 25�� 
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So that 


 � 185 lim3�)� $!>?)< @5 - 5@@� - 25( 

    
 � 185 lim3�)� $!>?)< @5 - @@� A @1 - 25/@�B( 

    
 � 185 C� D2 - 0E 

    
 9D5  


 � 185 lim3��� $!>?)< F5 - 5FF� - 25( 

    
 � 185 lim4��� $!>?)< F5 - FF� A F1 - 25/F�B( 

    
 � 185 C� D2 - 0E 

    
 9D5  

 

                                                       


 900 	���� - 25�� 
 9D5 - 9D5 
 18D5
�� 

)�
 

 

 
 900��� - 25��  	��� 
)�

 
 900250 9!>?)< �5 - 5��� - 25=)�
��

 

                  
 185 CD2 - ∞∞ - D2 � ∞∞E 

WHY :  � � �∞  , and  � � -∞   
WHY   NOT  � 
 �∞  and  � 
 -∞     
 Explanation: If � 
 �∞       

                                                                                                             

   

 
��   is indeterminate form. 
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IMPROPER INTEGRAL OF SECOND KIND: 
CASE I: 

       The improper integral of second kind in which the 

integrand becomes infinite at any point on the interval of 

integration i.e G H I>, JK, is defined as 


  �����
�

 	� 
  
  ����L
�

 	� -  
  �����
L

 	�   

  �����
�

 	� 
  lim3 � LM 
  ����3
�

 	� - lim4 � LN 
  �����
4

 	�  
          The improper integral from > to J convergent if the 

integral from > to G and G to J both converges otherwise 

integral from > to be divergent. 

 

Example 10.27:   
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WHY NOT : 


 	��� � 2�</2
O

7 
 32 P�� � 2��/2Q7O 

                            
 2� R2�/2 � 2�/2S 

                            
 0 

Explanation: ���� is not continuous at 2, 

but ���� is continuous on  I0, 2� T �2, 4K 

Figure 10.88 

 

So that    

    

              
 32 limU��MP�� � 2��/2Q73 

              
 32 lim3��M $�@ � 2��/2
� 2�2E 

              
 32 �0 � 2�/2� 

              
 � 32 . 2�/2 

              
 32 lim4��NP�� � 2��/2Q4O  

 
 32 lim4��NV2�2 

��F � 2��2W 

                             
 32 �2�/2 � 0� 

              
 32 . 2�/2 

   So that  

 


 	��� � 2�</2
O

7 
 32 . 2�/2 - 32 . 2�/2 
 3. 2�/2 

 

Example 10.28: 

                  


 XYG��Z
7  	� 

Solution:  ���� 
 XYG��    [   � \D2] 
 ∞     ;     D2 H �0, D� 

The value of integrand is infinite at  � 
 D/2 H �0, D�. ����  is continuous on I0, Z�� T �Z� , DK. 

 

 

 

 
 

 

Figure 10.88 

 

                Area under the curve  

 ���� 
 1�� � 2�</2 

          above x-axis between 

      0 and 4 is not equal to zero.  
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So that  

 


 XYG��Z
7  	� 
 
 XYG��Z/�

7  	� - 
 XYG��Z
Z/�  	� 

       

                        
 limU�Z�M 
 XYG��3
7  	� - lim4�Z�N 
 XYG��Z

4  	� 

                              
 limU�Z�MItan �K7Z - lim4�Z�NItan �K4Z       �  �1� 

 

 

WHY NOT: 

 
 XYG��Z
7  	� 
 Itan �K7Z 
 tan D � tan 0 
 0 

Its mean the area under the curve XYG�� 

between the vertical lines � 
 0 and � 
 D is 

zero but according to the figure 10.89 the area 

under the curve is not zero. 

Explanation: ���� 
 XYG�� is not continuous at D/2. 
 

 

So that  limU�Z�MItan �K73 


 limU�Z�MVtan @ � tan 0W 


 tan D/2  
 ∞ 

lim4�Z�NItan �K4Z 


 lim4�Z�NVtan D � tan FW 


 0 � tan D/2  
 �∞ 

 

(1) becomes  

 

                
 XYG��Z
7  	� 
 ∞ - ∞ 
 ∞ 

 

 

 

 

 

 

 

 

 
 

Figure 10.89 

 

              The graph of the function  ���� 
 XYG�� 

                      from 0 to D 

           shows that the area under  

        the curve is not equal to zero. 
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CASE II: 

      The improper integral of second kind in which the 

integrand becomes infinite at lower limit “a” of the 

interval of integration [a, b] and continuous on [a, b] is 

defined as 

            
      �����
�

 	� -  limL � �N 
      �����
L

 	�  
         The improper integral is said to be convergent if the 

limit on right side exist, otherwise it is said to be 

divergent. 

Example 10.29: 


 1�� � 1�< 2_ 	��
<  

Solution: 

The integrand is 

���� 
 1�� � 1�< 2_  

��1� 
 ∞ 

The integrand ���� is discontinuous at � 
 1 but 

continuous on �1,2K. 

 1�� � 1�< 2_ 	� 
 limL�<N 
 �� � 1�)< 2_�

L  	��
<  

 

WHY NOT: � 
 1  or � � 1     ,       WHY:  � � 1� 

Explanation:  ���� is discontinuous at � 
 1, X` � a 1 Jb! � � 1 

Since � � 1 cY>?X � � 1) `d � � 1�  >?	  1 H I1), 2K Jb! 1∉I1�, 2K, X` � � 1� 

Figure 10.90 

 
 32 limL�<N *�� � 1�� 2_ +L
�
 

                                
 32 limL�<N C1 � �G � 1�� 2_ E 

                               
 32 C1 � �1 � 1� 2_ E 

                              
 32 
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CASE III: 

       The improper integral of second kind in which the 

integrand becomes infinite at upper limit J on the 

interval of integration [a, b] and continuous on [a, b] is 

defined as 


      �����
�

 	� -  limL � �M 
      ����L
�

 	�  
       The improper integral is said to be convergent if the 

limit on right side exist, otherwise it is divergent. 

Example 10.31: 


 12 � � 	��
7  

 

Solution: 

The integrand is ���� 
 12 � � ��2� 
 ∞ 

The integrand ���� is discontinuous at � 
 2 but 

continuous on I0,2�. 

 12 � � 	� 
 limL��M 
 12 � �L

7  	��
7  

 

WHY NOT: � 
 2  or � � 2     ,       WHY:  � � 2) 

Explanation:  ���� is discontinuous at � 
 2, X` � a 2 Jb! � � 2 

Since � � 2 cY>?X � � 2) `d � � 2�  >?	  2 H I0, 2�K Jb! 2∉I0, 2)K, X` � � 2) 

Figure 10.92                                                                                        
 � limL��MIln �2 � ��K7L                                               
 � limL��MVln�2 � G� � e?2W                                              
 �V∞ � e?2W                                              
 �∞ 

The limit does not exist. So that improper integral   

 1�� � 1�� 	��

<  

diverges. 
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EXERCISE 
        Determine whether the following improper 

integrals converge or diverge if it converges find its 

value. 

�1�  
 �� Y)fg  	��
<

                        �2� 
 ��� -  1  	��
<

  
                         

�3� 
 	��√�� �  1  	��
<

                  �4�  
 	���h?��� �
<

   
  
�5� 
      1��  	�  <

)�
                         �6�    
      2�	���� �  1�� �

)�
    

                              

      �7�  �      �ffj) <  	�<)�                   �8�   � � Y)fj  	��)�        
 

 

 �9�  
      �	���� -  9�2/� �
)�

           �10�   
      1� <
)<

	�    
     

  �11�  �      kf<)fj 27                          �12� � XYG� � 	�Z7       
 

                                                                      �13�  � XYG� � 	�Z/�7      

 

 

 

 

                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


