Book 2

CALCULUS

WITH APPLICATIONS

M. MAQSOODALI

IMPROPER INTEGRAL

The definite integral $\int_{a}^{b} f(x) d x$ is said to be improper integral if at least one limit is infinite. This type of improper integral is called improper integral of first kind.

There is another type of improper integral in which the limit of integration are finite but the integrand f becomes infinite at some points on the interval of integration. This type of improper integral is called improper integral of second kind.

IMPROPER INTEGRAL OF FIRST KIND:

CASE - I:

The improper integral of first kind in which upper limit of the integration is infinite is defined as

$$
\int_{a}^{+\infty} f(x) d x=\lim _{t \rightarrow+\infty} \int_{a}^{t} f(x) d x
$$

The improper integral is said to be convergent if the limit on the right side exist, otherwise it is said to be divergent.
Example 10.24:

$$
\int_{5}^{+\infty} \frac{800 d x}{x^{2} \sqrt{x^{2}-16}}=?
$$

Solution:
$\int_{5}^{+\infty} \frac{800 d x}{x^{2} \sqrt{x^{2}-16}}=800 \lim _{t \rightarrow+\infty} \int_{5}^{t} \frac{d x}{x^{2} \sqrt{x^{2}-16}}$

$$
=\frac{400}{3} \lim _{t \rightarrow+\infty}\left[\frac{\sqrt{x^{2}-16}}{x}\right]_{5}^{t}
$$

$$
=\frac{400}{3} \lim _{t \rightarrow+\infty}\left\{\frac{\sqrt{t^{2}-10}}{t}-\frac{3}{5}\right\}
$$

$$
=\frac{400}{3} \lim _{t \rightarrow+\infty}\left\{\frac{t}{t} \cdot \sqrt{1-16 / t^{2}}-\frac{3}{5}\right\}
$$

$$
\begin{aligned}
& \text { WHY } x \rightarrow+\infty, \text { WHY NOT } x=+\infty \\
& \text { Explanation: If } x=+\infty \text {, then } \\
& \begin{aligned}
\int_{5}^{+\infty} \frac{800 d x}{x^{2} \sqrt{x^{2}-16}} & =\frac{800}{3}\left[\frac{\sqrt{x^{2}-16}}{x}\right]_{5}^{+\infty} \\
& =\frac{400}{3}\left[\frac{x}{x} \cdot \sqrt{1-16 / x^{2}}\right]_{5}^{+\infty} \\
& =\frac{400}{3}\left\{\frac{\infty}{\infty}-\frac{3}{5}\right\}
\end{aligned}
\end{aligned}
$$

$\frac{\infty}{\infty}$ is indeterminate form, so $x \rightarrow+\infty$.

$$
\begin{aligned}
& =\frac{400}{3} \lim _{t \rightarrow+\infty}\left\{\sqrt{1-16 / t^{2}}-\frac{3}{5}\right\} \\
& =\frac{400}{3}\left\{1-\frac{3}{5}\right\} \\
& =\frac{160}{3}
\end{aligned}
$$

CASE - II:

The improper integral of first kind in which lower limit is infinite is defined as

$$
\int_{-\infty}^{b} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{b} f(x) d x
$$

The improper integral is said to be convergent if the limit on the right side exist, otherwise it is said to be divergent.

$$
\int_{-\infty}^{-5} \frac{500 d x}{\sqrt{\left(x^{2}-9\right)^{3}}}=?
$$

CASE - III:

The improper integral of first kind in which both the limits of integration are not finite is defined as

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =\int_{-\infty}^{b} f(x) d x+\int_{-\infty}^{\infty} f(x) d x \\
& =\lim _{p \rightarrow-\infty} \int_{p}^{b} f(x) d x+\lim _{q \rightarrow \infty} \int_{a}^{q} f(x) d x
\end{aligned}
$$

The improper integral is said to be convergent if both limit of right side exist, otherwise it is said to be divergent.

Example 10.26:

$$
\int_{-\infty}^{+\infty} \frac{900}{\left(x^{2}+25\right)^{2}} d x=?
$$

Solution:

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} \frac{900}{\left(x^{2}+25\right)^{2}} d x \\
& =900\left\{\int_{-\infty}^{0} \frac{d x}{\left(x^{2}+25\right)^{2}}+\int_{0}^{+\infty} \frac{d x}{\left(x^{2}+25\right)^{2}}\right\} \\
& =900\left\{\lim _{p \rightarrow-\infty} \int_{p}^{0} \frac{d x}{\left(x^{2}+25\right)^{2}}+\lim _{q \rightarrow+\infty} \int_{0}^{q} \frac{d x}{\left(x^{2}+25\right)^{2}}\right\} \rightarrow(1)
\end{aligned}
$$

Figure 10.87
The graph of the curve $f(x)=\frac{900}{\left(x^{2}+25\right)^{2}}$

```
WHY : \(x \rightarrow-\infty\), and \(x \rightarrow+\infty\)
WHY NOT \(x=-\infty\) and \(x=+\infty\)
Explanation: If \(x=-\infty\)
\(\int_{-\infty}^{+\infty} \frac{900}{\left(x^{2}+25\right)^{2}} d x=\frac{900}{250}\left[\tan ^{-1} \frac{x}{5}+\frac{5 x}{x^{2}+25}\right]_{-\infty}^{+\infty}\)
    \(=\frac{18}{5}\left\{\frac{\pi}{2}+\frac{\infty}{\infty}+\frac{\pi}{2}-\frac{\infty}{\infty}\right\}\)
\(\frac{\infty}{\infty}\) is indeterminate form.
```

So that

$=-\frac{18}{5} \lim _{p \rightarrow-\infty}\left\{\tan ^{-1} \frac{p}{5}+\frac{5 p}{p^{2}+25}\right\}$
$=-\frac{18}{5} \lim _{p \rightarrow-\infty}\left\{\tan ^{-1} \frac{p}{5}+\frac{p}{p^{2}}\left(\frac{p}{1+25 / p^{2}}\right)\right\}$
$=-\frac{18}{5}\left\{-\frac{\pi}{2}+0\right\}$
$=\frac{9 \pi}{5}$
$=-\frac{18}{5} \lim _{p \rightarrow+\infty}\left\{\tan ^{-1} \frac{q}{5}+\frac{5 q}{q^{2}+25}\right\}$
$=-\frac{18}{5} \lim _{q \rightarrow+\infty}\left\{\tan ^{-1} \frac{q}{5}+\frac{q}{q^{2}}\left(\frac{q}{1+25 / q^{2}}\right)\right\}$
$=-\frac{18}{5}\left\{-\frac{\pi}{2}+0\right\}$
$=\frac{9 \pi}{5}$

$$
\int_{-\infty}^{+\infty} \frac{900 d x}{\left(x^{2}+25\right)^{2}}=\frac{9 \pi}{5}+\frac{9 \pi}{5}=\frac{18 \pi}{5}
$$

IMPROPER INTEGRAL OF SECOND KIND:

CASE I:

The improper integral of second kind in which the integrand becomes infinite at any point on the interval of integration i.e $c \in[a, b]$, is defined as
$\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$ $\int_{a}^{b} f(x) d x=\lim _{p \rightarrow c^{-}} \int_{a}^{p} f(x) d x+\lim _{q \rightarrow c^{+}} \int_{q}^{b} f(x) d x$

The improper integral from a to b convergent if the integral from a to c and c to b both converges otherwise integral from a to be divergent.

Example 10.27:

AUTMHOR

IMr Mreqsoool ㅅT
ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
all books and cd on
MATHEMATICS
BY
M. MAQSOOD ALI

FROM WEBSITE
www.mathbunch .com

$$
\begin{aligned}
& \text { WHY NOT : } \\
& \begin{aligned}
\int_{0}^{4} \frac{d x}{(x-2)^{1 / 3}} & =\frac{3}{2}\left[(x-2)^{2 / 3}\right]_{0}^{4} \\
& =\frac{3}{2}\left\{2^{2 / 3}-2^{2 / 3}\right\} \\
& =0
\end{aligned}
\end{aligned}
$$

Explanation: $f(x)$ is not continuous at 2 , but $f(x)$ is continuous on $[0,2) \cup(2,4]$ Figure 10.88

So that

$=\frac{3}{2} \lim _{P \rightarrow 2^{-}}\left[(x-2)^{2 / 3}\right]_{0}^{p}$	$=\frac{3}{2} \lim _{q \rightarrow 2^{+}}\left[(x-2)^{2 / 3}\right]_{q}^{4}$
$\begin{array}{r} =\frac{3}{2} \lim _{p \rightarrow 2^{-}}\left\{(p-2)^{2 / 3}\right. \\ \left.-2^{\frac{2}{3}}\right\} \end{array}$	$\begin{aligned} & =\frac{3}{2} \lim _{q \rightarrow 2^{+}}\left\{2^{\frac{2}{3}}\right. \\ & \left.\quad-(q-2)^{\frac{2}{3}}\right\} \end{aligned}$
$=\frac{3}{2}\left(0-2^{2 / 3}\right)$	$=\frac{3}{2}\left(2^{2 / 3}-0\right)$
$=-\frac{3}{2} \cdot 2^{2 / 3}$	$=\frac{3}{2} \cdot 2^{2 / 3}$

$\int_{0}^{4} \frac{d x}{(x-2)^{1 / 3}}=\frac{3}{2} \cdot 2^{2 / 3}+\frac{3}{2} \cdot 2^{2 / 3}=3 \cdot 2^{2 / 3}$
Example 10.28:

$$
\int_{0}^{\pi} \sec ^{2} x d x
$$

Solution:

$f(x)=\sec ^{2} x \quad \Rightarrow f\left(\frac{\pi}{2}\right)=\infty \quad ; \quad \frac{\pi}{2} \in(0, \pi)$
The value of integrand is infinite at $x=\pi / 2 \in(0, \pi)$.
$f(x)$ is continuous on $\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]$.

So that

$$
\begin{aligned}
\int_{0}^{\pi} \sec ^{2} x d x & =\int_{0}^{\pi / 2} \sec ^{2} x d x+\int_{\pi / 2}^{\pi} \sec ^{2} x d x \\
& =\lim _{P \rightarrow \frac{\pi^{-}}{2}} \int_{0}^{p} \sec ^{2} x d x+\lim _{q \rightarrow \frac{\pi^{+}}{2}} \int_{q}^{\pi} \sec ^{2} x d x \\
& =\lim _{P \rightarrow \frac{\pi^{-}}{2}}[\tan x]_{0}^{\pi}+\lim _{q \rightarrow \frac{\pi^{+}}{2}}[\tan x]_{q}^{\pi} \quad \rightarrow(1)
\end{aligned}
$$

WHY NOT:

$\int_{0}^{\pi} \sec ^{2} x d x=[\tan x]_{0}^{\pi}=\tan \pi-\tan 0=0$
Its mean the area under the curve $\sec ^{2} x$
between the vertical lines $x=0$ and $x=\pi$ is zero but according to the figure $\mathbf{1 0 . 8 9}$ the area under the curve is not zero.
Explanation:
$f(x)=\sec ^{2} x$ is not continuous at $\pi / 2$.
So that

$\lim _{P \rightarrow \frac{\pi^{-}}{2}}[\tan x]_{0}^{p}$	$\lim _{q \rightarrow \frac{\pi^{+}}{2}}[\tan x]_{q}^{\pi}$
$=\lim _{P \rightarrow \frac{\pi^{-}}{2}}\{\tan p-\tan 0\}$	$=\lim _{q \rightarrow \frac{\pi^{+}}{2}}\{\tan \pi-\tan q\}$
$=\tan \pi / 2$	$=0-\tan \pi / 2$
$=\infty$	$=-\infty$
$=\infty$	

(1) becomes

$$
\int_{0}^{\pi} \sec ^{2} x d x=\infty+\infty=\infty
$$

CASE II:

The improper integral of second kind in which the integrand becomes infinite at lower limit "a" of the interval of integration $[a, b]$ and continuous on $[a, b]$ is defined as

$$
\int_{a}^{b} f(x) d x+\lim _{c \rightarrow a^{+}} \int_{c}^{b} f(x) d x
$$

The improper integral is said to be convergent if the
limit on right side exist, otherwise it is said to be
divergent.
Example 10.29:

$$
\int_{1}^{2} \frac{1}{(x-1)^{1 / 3}} d x
$$

Solution:
The integrand is

$$
\begin{gathered}
f(x)=\frac{1}{(x-1)^{1 / 3}} \\
f(1)=\infty
\end{gathered}
$$

The integrand $f(x)$ is discontinuous at $x=1$ but continuous on (1,2].

$$
\int_{1}^{2} \frac{1}{(x-1)^{1 / 3}} d x=\lim _{c \rightarrow 1^{+}} \int_{c}^{2}(x-1)^{-1 / 3} d x
$$

WHY NOT: $x=1$ or $x \rightarrow 1, \quad$ WHY: $x \rightarrow 1^{+}$ Explanation:
$f(x)$ is discontinuous at $x=1$, so $x \neq 1$ but $x \rightarrow 1$
Since $x \rightarrow 1$ means $x \rightarrow 1^{-}$or $x \rightarrow 1^{+}$and
$1 \in\left[1^{-}, 2\right]$ but $1 \notin\left[1^{+}, 2\right]$, so $x \rightarrow 1^{+}$

Figure 10.90

$$
\begin{aligned}
& =\frac{3}{2} \lim _{c \rightarrow 1^{+}}\left[(x-1)^{2 / 3}\right]_{c}^{2} \\
& =\frac{3}{2} \lim _{c \rightarrow 1^{+}}\left\{1-(c-1)^{2 / 3}\right\} \\
& =\frac{3}{2}\left\{1-\left(1-1^{2 / 3}\right\}\right. \\
& =\frac{3}{2}
\end{aligned}
$$

A UTHPTOR

MI MIPQSOOD ATI ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON MATHEMATICS BY
M. MAQSOOD ALI FROM WEBSITE
www.mathbunch.com

Figure 10.91

CASE III:

The improper integral of second kind in which the integrand becomes infinite at upper limit b on the interval of integration $[a, b]$ and continuous on $[a, b]$ is defined as

$$
\int_{a}^{b} f(x) d x+\lim _{c \rightarrow b^{-}} \int_{a}^{c} f(x) d x
$$

The improper integral is said to be convergent if the limit on right side exist, otherwise it is divergent. Example 10.31:

$$
\int_{0}^{2} \frac{1}{2-x} d x
$$

Solution:

The integrand is

$$
\begin{gathered}
f(x)=\frac{1}{2-x} \\
f(2)=\infty
\end{gathered}
$$

The integrand $f(x)$ is discontinuous at $x=2$ but continuous on $[0,2)$.

$$
\int_{0}^{2} \frac{1}{2-x} d x=\lim _{c \rightarrow 2^{-}} \int_{0}^{c} \frac{1}{2-x} d x
$$

WHY NOT: $x=2$ or $x \rightarrow 2, \quad$ WHY: $x \rightarrow 2^{-}$

Explanation:

$f(x)$ is discontinuous at $x=2$, so $x \neq 2$ but $x \rightarrow 2$ Since $x \rightarrow 2$ means $x \rightarrow 2^{-}$or $x \rightarrow 2^{+}$and $2 \in\left[0,2^{+}\right]$but $2 \notin\left[0,2^{-}\right]$, so $x \rightarrow 2^{-}$

Figure 10.92

Figure 10.92

$$
\begin{aligned}
& =-\lim _{c \rightarrow 2^{-}}[\ln (2-x)]_{0}^{c} \\
& =-\lim _{c \rightarrow 2^{-}}\{\ln (2-c)-\ln 2\} \\
& =-\{\infty-\ln 2\} \\
& =-\infty
\end{aligned}
$$

The limit does not exist. So that improper integral

$$
\int_{1}^{2} \frac{1}{(x-1)^{2}} d x
$$

diverges.

EXERCISE

Determine whether the following improper

integrals converge or diverge if it converges find its value.
(1) $\int_{1}^{\infty} x^{2} e^{-x^{3}} d x$
(2) $\int_{1}^{\infty} \frac{x}{x^{2}+1} d x$
(3) $\int_{1}^{\infty} \frac{d x}{x \sqrt{x^{2}}-1} d x$
(4) $\int_{1}^{\infty} \frac{d x}{x(i n x)^{2}}$
(5) $\int_{-\infty}^{1} \frac{1}{x^{5}} d x$
(6) $\int_{-\infty}^{2} \frac{2 x d x}{\left(x^{2}-1\right)^{2}}$
(7) $\int_{-\infty}^{1} \frac{2 x}{x^{2}-1} d x$
(8) $\int_{-\infty}^{\infty} x e^{-x^{2}} d x$
(9) $\int_{-\infty}^{\infty} \frac{x d x}{\left(x^{2}+9\right)^{3 / 2}}$
(10) $\int_{-1}^{1} \frac{1}{x} d x$
(11) $\int_{0}^{3} \frac{d x}{1-x^{2}}$
(12) $\int_{0}^{\pi} \sec ^{2} x d x$
(13) $\int_{0}^{\pi / 2} \sec ^{2} x d x$

