

TYPES OF DEFINITE INTEGRATIONS:

Figure 10.55

(b) Volume of solid generated by rotating region R about y-axis, as shown in

figure 10.56 is

$$V = 2\pi \int_{a}^{b} xf(x)dx$$

(3) LENGTH OF A PLANE CURVE:

If f(x) is a curve continuous on [a, b], the length of the curve from x = a and x = b, as shown in the **figure 10.57** is

$$L = \int_a^b \sqrt{1 + [f(x)]^2} dx$$

Surface area of solid generated by rotating the curve f(x) about x-axis between vertical lines x = a and x = b, as shown in

figure 10.58 is

$$S = 2\pi \int_{a}^{b} f(x) \sqrt{1 + [f(x)]^2} dx$$

Figure 10.56

Figure 10.58

Example 10.14:

A solid of revolution is created by revolving a region bounded by the graph $f(x) = x^3 - 6x + 20$

and x-axis between the vertical lines x = 0 and

x = 5 cm, figures 10.59 and 10.60.

(a) Find the volume of the solid.

(b) The density of the copper (metal) is 8940 kg/m^3 , which is used to create the solid. How much metal is used?

AUPPEOR M. MAQSOD ALL ASSISTANT PROFESSOR OF MATHEMATICS

$$= \pi \left[-u \cos u + \sin u \right]_0^{\pi^2/4} + \pi^3$$

 $= 39 \, units^3$

Example 10.17:

Physical Science

Find the volume of hollow solid of revolution of thickness 2 cm created by revolving the region bounded by the graph f(x) = x + 5 and g(x) between x = 0 cm and x = 10 cm about x –axis, **figures 10.65** and **10.66**. (a) Gold which is used to create the solid has density 19.32 gram/cm³. How much mass of gold is used?

Solution

f(x) = x + 5The thickness is 2 cm, so that g(x) = f(x) - 2 = x + 5 - 2 = x + 3

The volume of hollow solid

$$W = \int_0^{10} \{ [f(x)]^2 - [g(x)]^2 \} dx$$
$$= \int_0^{10} (4x + 16) dx$$
$$= [2x^2 + 16x]_0^{10}$$
$$= 360 \text{ cm}^3$$

(a) Density of gold= 19.32 gm/cm^3

The mass of the gold used to create solid

Example 10.18:

Physical Science

A solid of thickness 1cm is created by revolving the region bounded by the graphs of

 $f(x) = x^2 - 8x + 26$ and g(x)between x = 0 cm and x = 10 cm about x-axis. Find the volume of the solid of base 2cm, **figures 10.67** and **10.68**. **Solution:**

 $f(x) = x^2 - 8x + 26$

The thickness of the solid is 1 cm, so that

 $g(x) = f(x) - 1 = x^2 - 8x + 25$

The volume of solid is the sum of two solids one is created by revolving the region bounded by f(x) and x-axis between x = 0 cm and x = 2 cm about x-axis.

$$V_1 = \pi \int_0^2 [f(x)]^2 dx = \pi \int_0^2 (x^2 - 8x + 26)^2 dx$$

$$= \pi \int_0^2 (x^4 - 16x^3 + 116x^2 - 416x + 676) dx$$

= $\pi [\frac{x^5}{5} - 4x^4 + \frac{116x^3}{3} - 208x^2 + 676x]_0^2$
= 771.73 π cm³.

The other is hollow solid of thickness 1 cm created by the region bounded by the graphs f(x) and g(x) between x = 2 cm and x = 10 cm.

$$V_2 = \pi \int_2^{10} \{ [f(x)]^2 - [g(x)]^2 \} dx$$
$$= \pi \int_2^{10} (2x^2 - 16x + 51) dx$$

$$= \pi \left[\frac{2x^3}{3} - 8x^2 + 51x \right]_2^1$$

 $= 301.34\pi \text{ cm}^3.$

Total volume of the solid

 $V = V_1 + V_2$ = 771.73\pi + 301.34\pi = 1073.07\pi cm^3. ²Figure 10.67

Figure 10.68

Example 10.19:

Physical Science

У

5

A solid of revolution is obtained revolving a region bounded by the graph $f(x) = \sqrt{25 - x^2}$ and x-axis between x = 0 and x = 4 feet, **figures 10.69** and **10.70**. (a) Find the curved surface area of the solid. (b) Find the total surface area of the solid. **Solution:**

$$f(x) = \sqrt{25 - x^2}$$
$$f'(x) = \frac{-x}{\sqrt{25 - x^2}}$$

The curved surface area of the solid

The curved surface area of the solid

$$A_{1} = 2\pi \int_{a}^{b} f(x) \cdot \sqrt{1 + |f(x)|^{2}} dx$$

$$= 2\pi \int_{0}^{4} \sqrt{25 - x^{2}} \cdot \sqrt{1 + \frac{x^{2}}{25 - x^{2}}} dx$$

$$= 2\pi \int_{0}^{4} \sqrt{25 - x^{2}} \cdot \frac{5}{\sqrt{25 - x^{2}}} dx$$

$$= 10\pi dx \int_{0}^{4} dx$$

$$= 10\pi [x]_{0}^{4}$$

$$= 10\pi (4 - 0)$$

$$= 40\pi \text{ sq. feet.}$$
Total surface area is

$$A = \pi r_{1}^{2} + \pi r_{2}^{2} + 40\pi$$

$$= \pi (5)^{2} + \pi (3)^{2} + 40\pi$$

$$= 74\pi \text{ square feet.}$$

AUTIEOR M. MAQSOOD ALL ASSISTANT PROFESSOR OF MATHEMATICS

AUTTEOR M. MAQSOOD ALL ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD ALL BOOKS AND CD ON MATHEMATICS BY M. MAQSOOD ALL FROM WEBSITE WWW.mathbunch.com

AUPPEOR M. MAQSOD ALI ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD ALL BOOKS AND CD ON MATHEMATICS BY M. MAQSOOD ALL FROM WEBSITE WWW.mathbunch.com