Book 2

CALCULUS

WITH APPLICATIONS

M. MAQSOODALI

TYPES OF DEFINITE INTEGRATIONS:

There are two types of definite integration
(i) Proper integration.
(ii) Improper integration.

PROPER INTEGRATION:

The definite integral $\int_{a}^{b} f(x)$ is said to be proper integral if
(i) Both the limits a and b are finite.
(ii) The integrand f is finite at every point on the interval of integration.

FORMULAE

AREA, VOLUME, SURFACE AREA AND ARC LENGTH:
Formulae for Area under the curve, Volume of solid obtained by rotating a curve, Surface area of the solid and Arc length are given below.
(1) AREA UNDER THE CURVE:

Area under the curve $f(x)$ above x-axis between the vertical lines $x=a$ and $x=b$, as shown in the

figure 10.53 is

$$
\text { Area }=\int_{a}^{b} f(x) d x
$$

(2) VOLUME OF A SOLID BY ROTATING A REGION

The graph of $f(x)$ and x -axis form a region R between
vertical lines $x=a$ and $x=b$, as shown in the
figure 10.54
(a) Volume of solid generated by rotating region R
about x-axis, as shown in
figure 10.55 is

$$
V=\pi \int_{a}^{b}[f(x)]^{2} d x
$$

Figure 10.55
(b) Volume of solid generated by rotating region R about y-axis, as shown in
figure 10.56 is

$$
V=2 \pi \int_{a}^{b} x f(x) d x
$$

Figure 10.56
(3) LENGTH OF A PLANE CURVE:

If $f(x)$ is a curve continuous on $[a, b]$, the length of the curve from $x=a$ and $x=b$, as shown in the
figure 10.57 is

$$
L=\int_{a}^{b} \sqrt{1+[f(x)]^{2}} d x
$$

(4) SURFACE AREA OF A SOLID:

Surface area of solid generated by rotating the curve $f(x)$ about x-axis between vertical lines $x=a$ and $x=b$, as shown in

figure 10.58 is

$$
S=2 \pi \int_{a}^{b} f(x) \sqrt{1+[f(x)]^{2}} d x
$$

Physical Science

A UTHPTOR

MT MIAQSTOOD ATI

ASSISTANT PROFESSOR OF MATHEMATICS
FREE DOWNLOAD

ALL BOOKS AND CD ON MATHEMATICS BY
M. MAQSOOD ALI FROM WEBSITE
www.mathbunch.com

Physical Science

Using integration by parts

$$
\begin{aligned}
V & =\frac{\pi}{4}\left[e^{2 x}(\sin 2 x-\cos 2 x)\right]_{0}^{3 / 2} \\
& =5.93 \pi \text { units }^{3} .
\end{aligned}
$$

Figure 10.62

Physical Science

Example 10.16:
Find the volume of the solid obtained by revolving the region bounded by the graph

$$
f(x)=x^{2} \sin x^{2}+4
$$

and x-axis between the vertical lines $x=0$ and $x=\pi / 2$ about y-axis, figures $\mathbf{1 0 . 6 3}$ and $\mathbf{1 0 . 6 4}$.

Solution:

$$
f(x)=x^{2} \sin x^{2}+4
$$

The volume of the solid is

$$
\begin{gathered}
V=2 \pi \int_{0}^{\pi / 2} x\left\{x^{2} \sin x^{2}+4\right\} d x \\
=2 \pi\left\{\int_{0}^{\pi / 2} x \cdot x^{2} \sin x^{2}+\int_{0}^{\pi / 2} 4 x d x\right\} \\
=2 \pi \int_{0}^{\pi / 2}\left(x^{2} \sin x^{2}\right) x d x+\pi^{3}
\end{gathered}
$$

Let $u=x^{2}$

$$
\frac{1}{2} d u=x d x
$$

$$
x=0 \Rightarrow>u=0
$$

$$
x=\frac{\pi}{2}=>u=\frac{\pi^{2}}{4}
$$

Figure 10.64

$$
V=\pi \int_{0}^{\pi^{2} / 4} u \sin u d u+\pi^{3}
$$

$$
\begin{aligned}
& =\pi[-u \cos u+\sin u]_{0}^{\pi^{2} / 4}+\pi^{3} \\
& =39 \text { units }^{3}
\end{aligned}
$$

Example 10.17:
Find the volume of hollow solid of revolution of thickness 2 cm created by revolving the region bounded by the graph $f(x)=x+5$ and $g(x)$ between $x=0 \mathrm{~cm}$ and $x=10 \mathrm{~cm}$ about x-axis, figures $\mathbf{1 0 . 6 5}$ and 10.66.
(a) Gold which is used to create the solid has density 19.32 gram $/ \mathrm{cm}^{3}$. How much mass of gold is used?

Solution

$$
f(x)=x+5
$$

The thickness is 2 cm , so that

$$
g(x)=f(x)-2=x+5-2=x+3
$$

The volume of hollow solid

$$
\begin{aligned}
V & =\int_{0}^{10}\left\{[f(x)]^{2}-[g(x)]^{2}\right\} d x \\
& =\int_{0}^{10}(4 x+16) d x \\
& =\left[2 x^{2}+16 x\right]_{0}^{10} \\
& =360 \mathrm{~cm}^{3}
\end{aligned}
$$

Physical Science

Figure 10.65

Figure 10.66
(a) Density of gold $=19.32 \mathrm{gm} / \mathrm{cm}^{3}$

The mass of the gold used to create solid

$$
\begin{aligned}
& =360 \times 19.32 \\
& =6955.2 \text { grams } \\
& =6.96 \mathrm{~kg}
\end{aligned}
$$

Example 10.18:

Physical Science

A solid of thickness 1 cm is created by revolving the region bounded by the graphs of

$$
f(x)=x^{2}-8 x+26 \text { and } g(x)
$$

between $x=0 \mathrm{~cm}$ and $x=10 \mathrm{~cm}$ about x -axis. Find the volume of the solid of base 2 cm , figures $\mathbf{1 0 . 6 7}$ and $\mathbf{1 0 . 6 8}$.

Solution:

$$
f(x)=x^{2}-8 x+26
$$

The thickness of the solid is 1 cm , so that

$$
g(x)=f(x)-1=x^{2}-8 x+25
$$

The volume of solid is the sum of two solids one is created by revolving the region bounded by $f(x)$ and x-axis between $x=0 \mathrm{~cm}$ and $x=2 \mathrm{~cm}$ about x-axis.

$$
\begin{aligned}
V_{1} & =\pi \int_{0}^{2}[f(x)]^{2} d x=\pi \int_{0}^{2}\left(x^{2}-8 x+26\right)^{2} d x \\
& =\pi \int_{0}^{2}\left(x^{4}-16 x^{3}+116 x^{2}-416 x+676\right) d x \\
& =\pi\left[\frac{x^{5}}{5}-4 x^{4}+\frac{116 x^{3}}{3}-208 x^{2}+676 x\right]_{0}^{2} \\
& =771.73 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

The other is hollow solid of thickness 1 cm created by the region bounded by the graphs $f(x)$ and $g(x)$ between $x=2 \mathrm{~cm}$ and $x=10 \mathrm{~cm}$.

$$
\begin{aligned}
V_{2} & =\pi \int_{2}^{10}\left\{[f(x)]^{2}-[g(x)]^{2}\right\} d x \\
& =\pi \int_{2}^{10}\left(2 x^{2}-16 x+51\right) d x \\
& =\pi\left[\frac{2 x^{3}}{3}-8 x^{2}+51 x\right]_{2}^{10} \\
& =301.34 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Total volume of the solid

$$
\begin{aligned}
V & =V_{1}+V_{2} \\
& =771.73 \pi+301.34 \pi \\
& =1073.07 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Example 10.19:

Physical Science

A solid of revolution is obtained revolving a region bounded by the graph $f(x)=\sqrt{25-x^{2}}$ and x-axis between $x=0$ and $x=4$ feet, figures 10.69 and 10.70 .
(a) Find the curved surface area of the solid.
(b) Find the total surface area of the solid.

Solution:

$$
\begin{aligned}
f(x) & =\sqrt{25-x^{2}} \\
f^{\prime}(x) & =\frac{-x}{\sqrt{25-x^{2}}}
\end{aligned}
$$

The curved surface area of the solid

$$
\begin{aligned}
& A_{1}=2 \pi \int_{a}^{b} f(x) \cdot \sqrt{1+[f(x)]^{2}} d x \\
= & 2 \pi \int_{0}^{4} \sqrt{25-x^{2}} \cdot \sqrt{1+\frac{x^{2}}{25-x^{2}}} d x \\
= & 2 \pi \int_{0}^{4} \sqrt{25-x^{2}} \cdot \frac{5}{\sqrt{25-x^{2}}} d x \\
= & 10 \pi d x \int_{0}^{4} d x \\
= & 10 \pi[x]_{0}^{4} \\
= & 10 \pi \text { (4-0) } \\
= & 40 \pi \text { sq. feet. }
\end{aligned}
$$

Total surface area is

$$
\begin{aligned}
A & =\pi r_{1}^{2}+\pi r_{2}^{2}+40 \pi \\
& =\pi(5)^{2}+\pi(3)^{2}+40 \pi \\
& =74 \pi \text { square feet. }
\end{aligned}
$$

TM. MIAQSTOOD ATIT ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON MATHEMATICS BY
M. MAQSOOD ALI

FROM WEBSITE
www.mathbunch.com

Physical Science

$$
\begin{aligned}
& =\int_{0}^{20} \sqrt{1+\frac{4}{9} x} d x \\
& =\frac{3}{2}\left[\left(1+\frac{4}{9} x\right)^{3 / 2}\right]_{0}^{20} \\
& =45 \text { units. }
\end{aligned}
$$

Example 10.22:

Physical Science

The graph of $f(x)=3 x^{3}$ between vertical lines $x=0$ and $x=1 \mathrm{~cm}$ is a curve, figure $\mathbf{1 0 . 7 3}$.
(a) Find the volume of solid revolving the region bounded by $f(x), y=0$ and vertical lines $x=0$ and $x=1$, figure 10.74 .
(b) The density of the silver (metal) is $10.49 \mathrm{gm} / \mathrm{cm}^{3}$ which will use to create the solid. How much metal will be used?
(c) The paint covers \qquad per litre, which will use to paint the solid. How much paint will be used to paint whole solid? Solution:
(a) $f(x)=3 x^{3}$

The volume of the solid between $x=0$ and $x=1 \mathrm{~cm}$.

$$
\begin{aligned}
V & =\pi \int_{0}^{1}\left[3 x^{3}\right]^{2} \quad d x=9 \pi \int_{0}^{1} x^{6} d x \\
& =\frac{9}{7} \pi \cdot\left[x^{7}\right]_{0}^{1} \\
& =\frac{9 \pi}{7} \mathrm{~cm}^{3}=4.04 \mathrm{~cm}^{3} .
\end{aligned}
$$

(b) Density of silver $=10.49 \mathrm{gm} / \mathrm{cm}^{3}$

The silver used to create the solid

$$
\begin{aligned}
& =4.04 \times 10.49 \\
& =42.38 \text { grams }
\end{aligned}
$$

(c) $f(x)=3 x^{3}$
$f^{\prime}(x)=9 x^{2}$
The curved surface area of the solid between $x=0$ and $x=1$

$$
\begin{aligned}
S & =2 \pi \int_{0}^{1} 3 x^{3} \cdot \sqrt{1+81 x^{4}} d x \\
& =\frac{\pi}{81}\left[\left(1+81 x^{4}\right)^{3 / 2}\right]_{0}^{1} \\
& =28.76
\end{aligned}
$$

Figure 10.73

Figure 10.74

A ${ }^{\text {P }}$ Ur]

MI MIPQSTOOD ATI ASSISTANT PROFESSOR OF MATHEMATICS

A UTHPTOR

MT. MIAQSTOOD ATI ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD

ALL BOOKS AND CD ON
MATHEMATICS
BY
M. MAQSOOD ALI FROM WEBSITE
www.mathbunch.com

