

REDUCTION FORMULAE

A reduction formula is formed for $\int f^n(x)dx$ or $\int f^n(x)g^m(x)dx$ when the integration is completed repeating the same process more than two times and each time except the last time f(x) and g(x) remain same only the powers m or n reduce.

The following four reduction formulae shows the reduction the power of x or $(a + bx^n)$.

$$(1) \int x^m (a+bx^n)^r dx$$

Reduction formula to reduce the power of x

$$\int x^m (a+bx^n)^r dx = Pf(x) + Q \int x^{m-n} (a+bx^n)^r dx$$

$$(2) \int x^{-m} (a + bx^n)^r dx$$

Reduction formula to reduce the power of x

$$\int x^{-m}(a+bx^n)^r dx = Pf(x) + Q \int x^{-m+n}(a+bx^n)^r dx$$

$$(3) \int x^m (a+bx^n)^r dx$$

Reduction formula to reduce the power of $(a + bx^n)$.

$$\int x^m (a+bx^n)^r dx = Pf(x) + Q \int x^m (a+bx^n)^{r-1} dx$$

$$(4) \int x^m (a+bx^n)^{-r} dx$$

Reduction formula to reduce the power of $(a + bx^n)$.

$$\int x^{m} (a + bx^{n})^{-r} dx = Pf(x) + Q \int x^{m} (a + bx^{n})^{-r+1} dx$$

Process to Form the Reduction Formulae:

A process to form reduction formula is given below for reduction formulae (1).

<u>First Method:</u> Using integration by parts:

$$\begin{split} \Psi(x) &= \int x^m \, (a+bx^n)^r \, dx \\ \text{Multiplying and dividing by } nb \, x^{n-1} \quad \{ \text{because } (a+bx^n)' = \, nb \, x^{n-1} \\ &= \frac{1}{nb} \left[\int x^m \, . \, \, x^{-n+1} \, (nbx^{n-1}) \, (a+bx^n)^r dx \right] \end{split}$$

$$= \frac{1}{nb} \left[\int x^{m-n+1} (nbx^{n-1})(a+bx^n)^r dx \right]$$

$$= \frac{1}{nb} \left[\frac{1}{r+1} x^{m-n+1} (a+bx^n)^{r+1} - \frac{m-n+1}{r+1} \int x^{m-n} (a+bx^n)^{r+1} dx \right]$$

$$= \frac{1}{nb} \left[\frac{1}{r+1} x^{m-n+1} (a+bx^n)^{r+1} - \frac{m-n+1}{r+1} \int x^{m-n} (a+bx^n)^r (a+bx^n) dx \right]$$

$$= \frac{1}{nb(r+1)} x^{m-n+1} (a+bx^n)^{r+1} - \frac{a(m-n+1)}{nb(r+1)} \int x^{m-n} (a+bx^n)^r dx - \frac{m-n+1}{n(r+1)} \Psi(x)$$

$$\Psi(x) = \frac{1}{b(nr+m+1)} x^{m-n+1} (a+bx^n)^{r+1} - \frac{a(m-n+1)}{b(nr+m+1)} \int x^{m-n} (a+bx^n)^r dx$$

where
$$P = \frac{1}{b(nr + m + 1)}$$
, $Q = \frac{-a(m - n + 1)}{b(nr + m + 1)}$

Second Method:

$$\Psi(x) = \int x^m (a + bx^n)^r dx$$

$$g(x) = a + bx^n \text{ and } g'(x) = bnx^{n-1}$$

To reduce the power of x.

$$\lambda = 1 + \min \{m - n, n\} = m - n + 1$$

 $\mu = 1 + \min\{r, r\} = r + 1$

$$\int x^{m} (a + bx^{n})^{r} dx = Px^{\lambda} (a + bx^{n})^{\mu} + Q \int x^{m-n} (a + bx^{n})^{r} dx$$

$$\int x^{m} (a + bx^{n})^{r} dx = Px^{m-n+1} (a + bx^{n})^{r+1} + Q \int x^{m-n} (a + bx^{n})^{r} dx$$

Differencing with respect to x

$$x^{m}(a+bx^{n})^{r} = P(m-n+1) x^{m-n}(a+bx^{n})^{r+1} + Pbn(r+1) x^{m}(a+bx^{n})^{r} + Q x^{m-n}(a+bx^{n})^{r}$$

$$x^{m}(a+bx^{n})^{r} = P(m-n+1) x^{m-n} (a+bx^{n})^{r} (a+bx^{n})$$

+ $Pbn(r+1) x^{m} (a+bx^{n})^{r} + Q x^{m-n} (a+bx^{n})^{r}$

$$x^{m}(a+bx^{n})^{r} = [Pb (m-n+1) + Pbn (r+1)] x^{m}(a+bx^{n})^{r} + [Pa (m-n+1) + Q] x^{m-n} (a+bx^{n})^{r}$$

By equating the coefficients, we get

$$Pb(m-n+1) + Pbn(r+1) = 1$$
, $Pa(m-n+1) + Q = 0$

$$P = \frac{1}{b(nr + m + 1)}$$
 and $Q = \frac{-a(m - n + 1)}{b(nr + m + 1)}$

Example 5:

An object is moving so that its speed at time t is $v = t^5(t^2 - 3)^{-3/2}$ kilometer per hour.

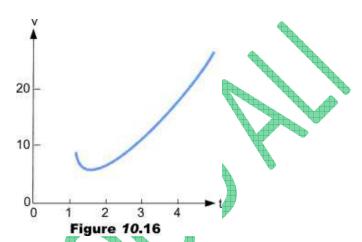
Figure 10.16

- (a) Find the distance of the particle at time t. At time 1.2 hours the particle is at distance 10 kilometer from the origin.
- (b) Find the distance of the particle from the origin in 4 hours.

AUTHOR

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS



FREE DOWNLOAD

ALL BOOKS AND CD ON MATHEMATICS
BY

M-MAQSOOD ALI

FROM WEBSITE

www.mathbunch .com

Let
$$P = \frac{1}{m-2}$$
, $Q = \frac{m-1}{m-2}$
By (2):
If $m = 5$

$$\int t^5 (t^2 - 1)^{-\frac{3}{2}} dt$$

$$= \frac{1}{3} t^4 (t^2 - 1)^{-\frac{1}{2}} + \frac{4}{3} \int t^3 (t^2 - 1)^{-3/2} dt$$
If $m = 3$

$$\int t^3 (t^2 - 1)^{-\frac{3}{2}} dt$$

$$= t^2 (t^2 - 1)^{-\frac{1}{2}} + 2 \int t (t^2 - 1)^{-\frac{3}{2}} dt$$

$$= t^2 (t^2 - 1)^{-1/2} - 2(t^2 - 1)^{-1/2}$$
Hence
$$\int t^5 (t^2 - 1)^{-\frac{3}{2}} dt$$

$$= \frac{1}{3} t^4 (t^2 - 1)^{-\frac{1}{2}} + \frac{4}{3} t^2 (t^2 - 3)^{-\frac{1}{2}} - \frac{8}{3} (t^2 - 3)^{-\frac{1}{2}} + C$$

$$x = \frac{1}{3\sqrt{t^2 - 1}} (t^4 + 4t^2 - 8) + C \qquad \rightarrow (3)$$

At = 1.2 , x=10 , so by equation (3) $\mathcal{C}=10.08$

Putting in equation (3)

$$x = \frac{1}{3\sqrt{t^2 - 1}}(t^4 + 4t^2 - 8) + 10.08$$

Figure 10.17

(b) Putting t=4 in equation (4)

$$x = \frac{1}{3\sqrt{4^2 - 1}}(4^4 + 4.4^2 - 8) + 10.08$$

$$x = 36.93 \text{ km}$$

