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REDUCTION FORMULAE

A reduction formula is formed for [ f*(x)dx or [ f™(x)g™(x)dx when the integration is
completed repeating the same process more than two times and each time except the last
time f(x) and g(x) remain same only the powers m or n reduce.

The following four reduction formulae shows the reduction the power of x or (a + bx™).

(D fxm(a + bx™)"dx

Reduction formula to reduce the power of x

fxm(a + bx™)"dx = Pf(x) + Q f x™ x™)’
(2) fx‘m(a + bx™)"dx
Reduction formula to reduce the power of x

f x ™(a+ bx™)"dx = Pf(x ¢=™* " (a + bx™)"dx

3) fxm(a + bx™)"dx

Reduction formulator er bx™).

dx =Pf(x)+Q f x™(a+ bx™)" ldx

x™(a+ bx™)"dx = Pf(x) +Q f x™(a+ bx™) " dx
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Process to Form the Reduction Formulae:

A process to form reduction formula is given below for reduction formulae (1).

First Method: Using integration by parts:
Y(x)= [x™(a+ bx™)" dx
Multiplying and dividing by nb x™®~*  {because (a + bx™)' = nb x"?!

1
=— [J x™ . x7™1 (nbx™ 1) (a + bx™)"dx]
1 -
=— jxm""“ (nbx™ Y (a + bx")rdx]
17 1
— E —— xm—n+1 (a+bxn)r+1 _ (a+bxn)r+1dx]
17 1
= ol x™ " (a + bx™)" x™ ™ (a+ bx™)" (a + bx")dx]
1 m 1) m-n+1
— m—-n+1 r+1 m-n n\r _
nb(r + 1)x @+ ? fx (@ +bx")" dx n(r+1) P
_ n nr+1_a(m_n+1) m-n n\r
qj(x)_b(nr+ 1) a+bx") b(nr + m+ 1) x (a+bx™)"dx
where 1 0= —a(m - n+ 1)
(nr + m+ 1)’ b(nr + m + 1)
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Second Method:
P(x)= [x™ (a+bx™)" dx
g(x) = a+ bx™and g'(x) = bnx"?

To reduce the power of x.
A=14+min{m-nn}=m-n+1
u=1+min{r,r}=r+1

jxm (a + bx™)Tdx = Px*(a+ bx™* + Q jxm_n (a+ bx™)"dx

.[xm (a+ bx™)"dx = Px™ ™1(a+ bx™)"™ + Q jxm x™)"
Differencing with respect to x

x™(a+bx™) = P(m—n+1)x™"(a+ bx™)"*!
+ Pbn (r + 1) x™(a + bx™)" + @

x™a+bx") ' =P(m—-—n+1)xm"
+ Pbn (r+1)x™

x™(a+ bx™)" = [Pb (m — 1)
+ [Pa.(m
By equating t ffic et
Pb(m—n+1) +1)=1, Palm—n+1) +Q=0
b q _—a(m - n+ 1)
r s and Q= b(nr + m+ 1)
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Example 5:

An object is moving so that its speed at time t is

v = t3(t? — 3)73/2 kilometer per hour.
Figure 10.16

(a) Find the distance of the particle at time t. At time
1.2 hours the particle is at distance 10 kilometer from
the origin.
(b) Find the distance of the particle from the origin in
4 hours.
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Let P=— _nol
€ T m-=2 ’ Q_m—Z
By (2):
Ifm=5

3
ft5 (t? —1)72dt

1 1 4
=zt' =177+ §f t3 (t? —1)73/2dt
fm=3
3
ft?’ (t? — 1) 2dt
1 3
=t?(t* -1 2+ 2[t(t* — 1) 2dt

— tZ(tZ _ 1)—1/2 _ 2(t2 _ 1)—1/2

Hence
3
f £5 (62 — 1)"2dt (\
1 1 4 1 8 1 P
= 44052 1V T 42042 _ \TT — (42 _ 25 X
3t(t 1)2+3t(t 3)72 3(t 3)2+C X
x=;(t4+4t2—8)+c - (3)
W -1 a0t
At=1.2,x =10, so by equation (3)
C =10.08 OF
Putting in equation (3)

P |

x = ———(4* + 4.4% — 8) 0
3v42 -1
x = 36.93 km

2
x = _r (t* + 4t? — 8) + 10.08 0 t
e Figure 10.17 o ’ . ’
igu .
Fi 10.17
(b) Putting t = 4 in equation (4) aure
1
8
]
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