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ANTIDERIVATIVES — INDEFINITE INTEGRALS:

If a function ¢ is defined every where the function f is itself then function ¢ is said to be an
antiderivative of a function f if

¢'(x)=f(x) , forall xeDs

The set of all antiderivatives of f is the indefinite integral of f with respect to x, denoted

by
[ f(x)dx

The symbol [ is an integral operator and f (x) is called integran
Theorem 1:

If ¢(x) is an antiderivative of f(x), then ¢(x) + C is n anti ative of f(x) for
some constant c.
Proof:
Since ¢(x) is an antiderivative of f(x) therefore fc D

¢'(x) = f(x), then

= o)+ —(0)

Proof:

As ¢(x) and ¥ (x) are two antiderivatives of a function f (x) therefore
¢'(x) = f(x)and ¥'(x) = f(x) Vx € D
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Now

d d d
6@ - Y@= () - — Y

[p(x) — P = ¢'(x) — ¥'(x)

[p(x) = P@)]'=f() = f(x) \
[p(x) — P()]'=0 , Vx €D \
which shows that ¢(x) — ¥ (x) neither strictly increasing nor stric 2asing therefore

¢(x) —¥(x)isaconstant C forallx € Dy

¢(x) —¥(x) =C

p(x) =¥(x)+C

This proves the theorem.

RULES FOR INDEFINITE IB

(1) The integral of the sum of f(x
g ().

Proof:
Suppose ¢p(x) a ntiderivatives of f(x) and g(x) respectively then
nd  ¥'(x) =g(x)
We have

d d
[pC) + ¥l = ——o() + —— ¥(x)

(O YO = ¢'()+¥'()
6@+ @I = f0)+ g(®)

Thusd'(x) + W'(x) is an antiderivative of f(x) + g(x). Therefore we can write by
using integral notation.

f ) + g()]dx = ¢(0) + ¥(x)
f [0 + g(0ldx = f F()dx + f 9()dx
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(2) The integral of a constant C times a function f(x) equals to the constant times the integral
of the function.

Proof:

Suppose ¢(x) is the antiderivative of a function f(x) and C be any constant then

[Cp@' = Cf ()
d d
— (o] = € —0)

[CH(x)]" = C ¢'(x)
[CH()]) = C f(x)
Thus C¢(x) is an antiderivative of C f(x), Therefore by using in

write.
[ ¢ feaax = cow
fo(x)dxz Cff(x)dx Q

otati e can

INTEGRATION BY SUBSTITUTION:
(1) Iftheintegrand is:

(D) flgx)g'(x) : then ionu = g(x)
N 9’ ot —
(i) e en substitution u = g(x)

(2) Trigonometric substitut

If the integrand in

then substitution x = a sinu
then substitution x = a secu

then substitution x = a tanu

then substitution x = a sinhu
then substitution x = a coshu

then substitution x

a tanhu
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Example 1:
A car is running on a straight road. The speed of the
caris
— (t—8)°
v =
10,/100 — (t — 8)2
Figure 10.9

(a) Find the distance x (in kilometers) as a function of
time t(in minutes), If the car start at a distance 60
km from the origin.

(b) Find the time when the car will stop.

(c) Find the distance covered by the car in 16 minutes :-:
Solution:
Let x be the distance covered by the car in time t. i
dx 5T
E =7
X = fv dt a4
1 (t —8)3 1
X = ——f dt -(1)
10J /100 — (t — 8)2 l

Let t—8=u = dt=du

Putting in (1) Figure 10.9

1 u?
=55 =

Letu=10sin8 = du = 10cos0 db
Putting in (2)

X = —100fsin39 de

1
=-100 {—cose - §cos39} +C - (3)

since u=10sin8 = sinf =

cosl = m = [1-—
Putting in equation (2)

x= —%{—100M+%(100
Puttingu =t —8

x = 10,/100 — (t — 8)2 — %(100 —t-8)"2+cC

x = 60 km, when t = 0 minutes, so
c=72

Zfb}+c
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j%dA(t) =jkdt

InA(t) =kt+C - (1)
At t=0, A(t) = A(ty)
InA(ty) =0+ C A(t)

C =1nA(t,) Aq
Putting in (1) \

InA(t) = kt +1nA(t,) _ \

InA(t) —InA(ty) = kt
A(t)
= kt

lnA(to)

A® _ i 0 i
A(ty) Figure 710.11

A(t) = Ag e"* - (2)
Figure 10.11
Firstly calculate the value of k using half life of carbon-
14,

A(5730) = % 4 - O3)

According (2)
A(5730) = A, e>730k

1
EAO — AO 65730k ‘

0.5 = e.5730k

5730k =1n 0.5
k =—-0.000121
So that
A(t) — AO e—0.000121¢ N (4)
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_ 1
Since A(t) = EAO'
so that by (4)

1
EAO — Aoe—0.000121t

1
—=e

10

—0.000121¢t

—In10 = —-0.000121¢

t =19030
The bone is about 19030 years old.

Example 3: A

a(t)

A bullet is fired vertically upward with a
velocity 270 meters per second at a height 80 metres. >1
(a) Find the height of the bullet as a function of time.
(b) Find the height of the bullet from the ground at
t = 5 seconds.
-4
Solution:
(a) Acceleration due to gravity Figure 10.12
a=—g , Figure 10.12
dv
dt g v
N
v= —gfdt 270
v=—gt+A4 - (1)
v=270m\s att = 0, puttin quation (1)
A =270
. . . i )t
Putting in equation (1) ¢ 0 14 28
v=-—gt+2
Figure 10.
is the velocity of the bullet at time t.

Figure 710.13
Let h be the height of the bullet at time t from the
ground.

dh— t+ 270
dt . ©
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h
fdh = f( —gt + 270)dt A
40001
h=—=gt?+270t+B - (3)
h = 80 metres at t = 0, putting in equation (3)
80=0—-0+B
B =80
o ki
Putting in equation (3) Figure 10.14

1
h=—§ gt? + 270t + 80

is the height of the bullet at time ¢, figure 10. 14.

(b) Puttingt =5 sec
h =1307.5m
The height of the bullet from the ground is 1307.5
metres at t = 5 seconds.
Example 4:
The marginal cost and marginal revenue

functions for a company’s product are

MC = 0.06q + 2
MR = —0.08q + 20

The fixed cost is $200 and the revenue is z nno

units are sold.

(a) Determine the total cost fun

(b) Determine the total revenue ion for the
product.

(c) Determine the total profi
product.
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Solution:

©) C'(q) = MC = 0.06q + 2
qu)

C(q) = f(0.06q +2)dq i
14 |
=0.03¢2+2q+4 - ()
C = $200 for g = 0, because fixed cost is $200, so by
equation (1)
A =200
Putting in equation (1) 21
5 0 ' I ' zbo o q
C(q) =0.03q° +2q + 200 Figure 10.15 a

is the total cost function, figure 10.15a.

(b) R'(q) = MR = —0.08q + 20 QQ

R(q) = f(—0.08q + 20)dq

= —0.04g2 +20g +B - (2)

R = 0 for g = 0, so by equation (2)

R(q)
B=0 T
20
Putting in equation (2)
R(q) = —0.04¢* +
is the total revenue function, 1 *
(c) The total profit function P(t).is 47
; : } : >q

P(t) = R(t) — C(t) 0 200 -+

Figure 710.15 b
= (—0.04q2 + 20q) — (0.03 q2 + 2q + 200)

= —0.07q% + 18q — 200
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