

EXAMPLES AND THEOREMS FOR TAYLOR AND MACLAURIN SERIES:

Theorem A-8:

If a series converges then its nth term has the limit zero as $n \to \infty$.

Proof:

Suppose that the series
$$\sum_{1}^{\infty}a_n$$
 is convergent.
$$S_n=a_1+a_2+\cdots+a_{n-1}+a_n$$

$$S_{n-1}=a_1+a_2+\cdots+a_{n-1}$$

$$S_n - S_{n-1} = a_n$$

$$\lim_{n \to \infty} S_n = l \text{ and } \lim_{n \to \infty} S_{n-1} = l$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1})$$

$$= \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1}$$

$$= l - l = 0$$

Theorem A-9:

$$\lim_{n\to\infty} \left| \frac{x^n}{n!} \right| = 0 \text{ for every real number } x.$$

Proof:

Consider a series.

$$S_n = 1 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \dots + \frac{1}{n!}x^n + \dots$$

where x is a real number

Let
$$u_n = \frac{x^n}{n!}$$

$$\lim_{n \to \infty} \left[\frac{u_n + 1}{u_n} \right] = \lim_{n \to \infty} \left| \frac{x^{n+1} n!}{(n+1)! x^n} \right|$$

$$= \lim_{n \to \infty} \left| \frac{x}{n+1} \right|$$

$$= \lim_{n \to \infty} \left| \frac{1}{n+1} \right|, \quad |x| = 0 < 1$$

Since the limit 0 is less than 1 for every value of x, it follows from the ratio test that given series is absolutely convergent for all real numbers.

The preceding theorem state that if a series converges then its nth term has the limit 0 as $n \to \infty$,

$$\lim_{n\to\infty} \left| \frac{x^n}{n!} \right| = 0$$

Example 9.7:

Expend e^x in power of x.

Solution:

$$f(x) = e^x$$

k	$f^{(k)}(x)$	$f^{(k)}(0)$
0	e^x	1
1	e^x	1
2	e^x	1
3	e^{x} e^{x} e^{x} e^{x} e^{x} e^{x} e^{x}	1
4	e^x	1
5	e^x	1
:	:	
n+1	e^x	

$$\lim_{n \to \infty} |R_n| = \lim_{n \to \infty} \left| \frac{x^{n+1}}{(n+1)!} f^{(n+1)}(c) \right|$$

$$= \lim_{n \to \infty} \left| \frac{x^{n+1}}{(n+1)!} e^c \right| = e^c \lim_{n \to \infty} \left| \frac{x^{n+1}}{(n+1)!} \right|$$
Since $\lim_{n \to \infty} \left| \frac{x^{n+1}}{(n+1)!} \right| \to 0$ as $n \to \infty$, so

 $\lim_{n\to\infty}|R_n|\to 0$ Series of e^x in power of x converge to zero. Maclaurin's series is valid for e^x .

$$f(x) = f(0 + x)$$

$$f(x) = f(0) + xf^{(1)}(0) + \frac{x^2}{2!}f^{(2)}(0) + \frac{x^3}{3!}f^{(3)}(0)$$

$$+ \frac{x^4}{4!}f^{(4)}(0) + \frac{x^5}{5!}f^{(5)}(0) + \cdots$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \cdots$$

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{n!}$$

Example 9.8:

Expand six x in power of x

Solution:

$$f(x) = \sin x$$

k	$f^{(k)}(x)$	$f^{(k)}(0)$
0	sinx	0
1	cosx	1
2	-sinx	0
3	-cosx	-1
4	sinx	0
5	cosx	1
:	:	
n+1	$\pm sinx$ or $\pm cosx$	

$$\left|f^{(n+1)}(c)\right| = \left|\pm sinc\right| = \left|sinc\right| \le 1$$

and

$$\left|f^{(n+1)}(c)\right| = \left|\pm cosc\right| = \left|cosc\right| \le 1$$

In both cases

$$\left|f^{(n+1)}(c)\right| \le 1$$

Now

$$\lim_{n \to \infty} |R_n(x)| = \lim_{n \to \infty} \left| \frac{x^{n+1}}{(n+1)!} f^{(n+1)}(c) \right|$$

$$= \lim_{n \to \infty} \left| \frac{x^{n+1}}{(n+1)!} \right| \lim_{n \to \infty} \left| f^{(n+1)}(c) \right|$$

$$\leq 0 \times 1$$

$$= 0$$

$$R_n(x) \to 0 \text{ for } x \to \infty$$

$$R_n(x) \to 0 \text{ as } n \to \infty$$

Series converge to zero. Maclaurin's series is valid for $\sin x$.

$$f(x) = f(0+x)$$

$$f(x) = f(0+x)$$

$$f(x) = f(0) + xf^{(1)}(0) + \frac{x^2}{2!}f^{(2)}(0) + \frac{x^3}{3!}f^{(3)}(0) + \frac{x^4}{4!}f^{(4)}(0) + \frac{x^5}{5!}f^{(5)}(0) + \cdots$$

$$\sin x = 0 + x(1) + \frac{x^2}{2!}(0) + \frac{x^3}{3!}(-1) + \frac{x^4}{4!}(0) + \frac{x^5}{5!}(1)$$

Figure 7.32 a

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} \dots$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$

Example 9.9:

Expand $f(x) = \sin x$ in power of $\left(x - \frac{\pi}{2}\right)$.

Solution:

$f(x) = \sin x$			
k	$f^{(k)}(x)$	$f^{(k)}(\pi/2)$	
0	sinx	1	
1	cosx	0	
2	-sinx	-1	
3	-cosx	0	
4	sinx	1	
5	cosx	0	
:	:		
n+1	$\pm sinx$ or $\pm cosx$		

$$\left|f^{(n+1)}(c)\right| = \left|\pm sinc\right| = \left|sinc\right| \le 1$$

and

$$\left|f^{(n+1)}(c)\right| = \left|\pm cosc\right| = \left|cosc\right| \le 1$$

In both cases

$$\left|f^{(n+1)}(c)\right| \le 1$$

Now

$$\lim_{n \to \infty} |R_n(x)| = \lim_{n \to \infty} \left| \frac{(x - \frac{\pi}{2})^{n+1}}{(n+1)!} f^{(n+1)}(c) \right|$$

$$= \lim_{n \to \infty} \left| \frac{(x - \frac{\pi}{2})^{n+1}}{(n+1)!} \right| \lim_{n \to \infty} |f^{(n+1)}(c)|$$

$$\leq 0 \times 1$$

$$= 0$$

$$R_n(x) \to 0 \ as \ n \to \infty$$

The series of $\sin x$ in power of $\left(x-\frac{\pi}{2}\right)$ converge to zero. Taylor's series is valid for $\sin x$.

AUTHOR

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD

ALL BOOKS AND CD ON **MATHEMATICS**

BY

M. MAQSOOD ALI
FROM WEBSITE

www.mathbunch.com

The series of e^x in power of (x-1) converge to zero.

Taylor's series is valid for e^x .

$$f(x) = f(1 + (x - 1))$$

$$= f(1) + (x - 1)f^{(1)}(1) + \frac{(x - 1)^2}{2!}f^{(2)}(1)$$

$$+ \frac{(x - 1)^3}{3!}f^{(3)}(1) + \cdots$$

$$e^{x} = e + (x - 1)e + \frac{(x - 1)^{2}}{2!}e + \frac{(x - 1)^{3}}{3!}e + \cdots$$

$$e^x = e\{1 + (x - 1) + \frac{(x - 1)^2}{2!} + \frac{(x - 1)^3}{3!} + \cdots\}$$

Example 9.11:

Use an infinite series to approximate

$$\int_{0}^{1} \sin x^{2} dx$$

to three decimal places

Solution:

By Maclaurin's series

$$\sin x^2 = x^2 - \frac{x^6}{3!} + \frac{x^{10}}{5!} - \dots$$

So that

$$\int_{0}^{1} \sin x^{2} dx = \int_{0}^{1} \{x^{2} - \frac{x^{6}}{3!} + \frac{x^{10}}{5!} - \dots\} dx$$

$$\int_{0}^{1} \sin x^{2} dx = \left[\frac{x^{3}}{3} + \frac{x^{7}}{42} + \frac{x^{4}}{1320} - \dots\right] = 0.310$$

EXERCISE

- (1) Write down the first n terms, remainder and the general form of order n of Maclaurin polynomial to the function f(x) = cosx.
- (a) Using Maclaurin polynomial find and approximate value of $\cos \pi/4$, correct to five decimal places, for n=5.
- (b) (i) Find remainder and approximate value of $cos\pi/6$, for n=3.
 - (ii) Find the value of c such that $\cos \pi/6 = 0.5$.
- (c) Prove that $f(x) = P_5(x)$, correct to one decimal places for all $x \in (0, \frac{\pi}{2})$.

(a) Using Maclaurin polynomial, find an approximate value of e^4 , correct to three decimal places, for n=5.

- (b) Find the remainder and approximate value of e^7 , correct to four decimal places, for n=6 such that $e^7=1096.3316$.
- (4) Find Macluarin polynomial and remainder in term of \boldsymbol{c} of degree four for the function

$$f(x) = \frac{6}{x - 4}$$

- (a) Find the approximate value of f(9) using Macluarin polynomial and also remainder such that f(9) = 1.2.
- (c) Prove that $c \in (0,9)$.
- (5) Find the general form of Taylor polynomial about 1 for the function

$$f(x) = lnx$$

(6) Find the general form of Taylor polynomial and remainder about α for the function

$$f(x) = lnx$$

- (a) Find the approximate value and remainder (in term of c) of ln10 using Taylor's polynomial for n=5 about 4 and 8.
- (b) ln10=2.302585, correct to six decimal places, find the approximate value and remainder of ln10 by Taylor polynomial for n=5 about 9 and prove that $c\in(9,10)$.

FREE DOWNLOAD
ALL BOOKS AND CD ON
MATHEMATICS
BY
M. MAQSOOD ALI

EXERCISE 2

Use Taylor's series or Maclaurin's series to find the series of the following functions in power of indicated term.

- (1) $f(x) = e^{x}$ in x(2) $f(x) = \cos x$ in x(3) $f(x) = e^{x/a}$ in (x-a)(4) $f(x) = e^{-x}$ in (x+1)
- (5) f(x) = ln(1-x) in x(6) f(x) = ln(1+x) in x(7) f(x) = lnx in (x-1)
- (r) f(x) = mx m = (x 1)
- (8) Find a series in power of x for f(x) = ln(k + x)
 - (a) If $ln\ 10 = 2.3026$ then find (i) $ln\ 19$ (ii) $ln\ 19$ (iii) $ln\ 8$ (iv) can you find 2
 - (b) If $ln\ 100\ =\ 4.6052$ then find
 - (i) ln199 (ii) ln10 (iii) ln150 (iv) ln90 (v) can you find250
- (9) Find a series for ln(x/3) in power of x-3 and show that it is convergent by ratio method and valid for 0 < x < 6.
- (10) Find a series in power of x for the following and using ratio test to show that the series is convergent.
 - (i) $f(x) = \sinh x$ (ii) $f(x) = \cosh x$ Use an infinite series to approximate the following to four decimal places:
 - $(11) \int_{0}^{1} \frac{\sin x^{2}}{x^{2}} dx$ $(12) \int_{0}^{1} \frac{1 \cos x^{3}}{x^{2}} dx$ $(13) \int_{0}^{1} x^{2} \cos x^{2} dx$ $(14) \int_{0}^{0.5} \frac{\ln(1+x)}{x} dx$
 - $(15) \int_{0}^{0.1} \frac{(1 e^{x^2})}{x} dx$

Using infinite series approximately the following to four decimal places.

(16) ln1.6 (17) $cos1^o$ (18) $e^{1/2}$ (19) $\sqrt[3]{e}$

