Book 2

CALCULUS

WITH APPLICATIONS

M. MAQSOODALI

Chapter 9

TAYLOR'S AND MACLAURIN'S SERIES

The values of all real valued functions at any real number can be calculated by a scientific calculator. The buttons on scientific calculator give an idea that almost all real valued functions are formed by $x^{m / n}$, ten numerals $0,1,2,3,4,5,6,7,8,9$ and four operations,,$+- \times, \div$ except the functions involving $\log _{b} x, b^{x}$ and trigonometric functions, where m, n and b are real numbers. These functions are also represented by a polynomial or a series of x. An approximate value of $e^{x}, \sin x$ or $\cos x$ can be found for a real value x by pressing a button on a calculator. All the values of these trigonometric functions are not fed in the calculator because there are infinite values, so a program is fed in a calculator or a computer which are based on polynomials. Taylor's polynomials of degree n for e^{x} and $\cos x$ centred at zero are given below, where n is a non-negative integer.

Extending Taylor's polynomials obtain a power series that represents the function exactly.

$$
\begin{gathered}
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}
\end{gathered}
$$

Truncation error occurs when the series of a function $f(x)$ is truncated to finite number of terms, which is a polynomial, to calculate the value of the function for a real value $x=a$. The round off error arises as the power of x increases of the polynomial.

Numerical Analysis, a branch of mathematics is studied to learn how mathematical problems computerized to solve them. Almost all the topics of Numerical Analysis related to calculate the values of the functions for a real value of x are based on polynomials. Following topics from Numerical Analysis explain how polynomial forms.

- Curve fitting
- Interpolating polynomials
- Lagrangian polynomials
- Divided differences

The polynomials are formed using the above methods following a pattern and is used for computer programming. The following polynomials do not follow a pattern.

- $2 x^{5}-6 x^{2}+9$
- $6 x^{8}-2 x^{2}+3 x$
- $x^{7}+5 x^{4}+2 x+6$

Above polynomials can be represented by the polynomials which follow a pattern using the above methods. Taylor's series expresses most functions as a power series based on derivatives of the functions. Taylor's series is expanded about a point $x=a \in \mathbb{R}$, when $a=0$ the series is called Maclaurin's series.

Polynomials and Value of the functions:
The accuracy of the value of a function $f(x)$ depends on number of terms of its polynomial.

$$
f(x) \cong P_{n}(x)
$$

More terms of polynomial gives more accuracy in the value of the function.
Taylor's series of $\sin x$ is

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}
$$

This series gives exact value of $\cos x$.
Taylor's polynomial for $\cos x$ is

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}
$$

The function $\cos x$ and its Taylor's polynomial of degree 1,4 and 6 are given below.

$$
\begin{aligned}
& \cos x=P_{1}(x)=1-\frac{x^{2}}{2!} \\
& \cos x=P_{4}(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!} \\
& \cos x=P_{6}(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}
\end{aligned}
$$

The graphs of $\cos x$ and its polynomials between 0 and 2π are given below.

Figure 9.1
All graphs are drawn from $(0,0)$ but $P_{12}(x)$ is the nearest graph to the graph of $\cos x$ between 0 and 2π.

TAYLOR'S SERIES

If $f(x)$ is a function and all derivatives of $f(x)$ exist at $x=a$, then
$f(x)=f(a+(x-a))$

$$
\begin{aligned}
= & f(a)+f^{\prime}(a) \cdot(x-a)+\frac{1}{2!} f^{\prime \prime}(a) \cdot(x-a)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(a) \cdot(x-a)^{3} \\
& +\cdots+\frac{1}{n!} f^{(n)}(a) \cdot(x-a)^{n}+R_{n}(x)
\end{aligned}
$$

when $R_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$
where $R_{n}(x)=\frac{1}{(n+1)!} f^{n+1}(c)(x-a)^{n+1} \quad$ for $\quad c \in(a, b)$
Proof:
The following is the proof for $a<b$. The proof for $a>b$ is left for the reader.
$P_{n}(x)$ is a Taylor's polynomial of degree n.

$$
\begin{aligned}
P_{n}(x)= & f(a)+f^{\prime}(a) \cdot(x-a)+\frac{1}{2!} f^{\prime \prime}(a) \cdot(x-a)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(a) \cdot(x-a)^{3} \\
& +\cdots+\frac{1}{n!} f^{(n)}(a) \cdot(x-a)^{n}
\end{aligned}
$$

In general $P_{n}(x)$ is equal to $f(x)$ for some values of $x \in \mathbb{R}$, but not for all values, as shown in the following figures 9.2 (a), (b).

Figure 9.2 (a), (b)

$U_{n}(x)$ is another polynomial such that

AUTMHRR

Mr: Mreqssood Arr

ASSISTANT PROFESSOR OF MATHEMATICS

all bOOKS AND GD OM MATHEMATICS
www.mathbunch.com

The difference of $f(x)$ and $U_{n}(x)$ is a function $g(x)$ such that $g(x)=f(x)-U_{n}(x)$
$g(x)=f(x)-f(a)-f^{\prime}(a) \cdot(x-a)-\frac{1}{2!} f^{\prime \prime}(a) \cdot(x-a)^{2}-\frac{1}{3!} f^{\prime \prime \prime}(a) \cdot(x-a)^{3}$

$$
-\cdots-\frac{1}{n!} f^{(n)}(a) \cdot(x-a)^{n}-M(x-a)^{n+1}
$$

$$
g^{\prime}(x)=f^{\prime}(x)-f^{\prime}(a)-f^{\prime \prime}(a) \cdot(x-a)-\frac{1}{2!} f^{\prime \prime \prime}(a) \cdot(x-a)^{2}
$$

$$
-\cdots-\frac{1}{(n-1)!} f^{(n)}(a) \cdot(x-a)^{n-1}-M(n+1)(x-a)^{n} \quad \rightarrow(8)
$$

$$
\begin{aligned}
g^{\prime \prime}(x)= & f^{\prime \prime}(x)-f^{\prime \prime}(a)-f^{\prime \prime \prime}(a) \cdot(x-a)-\cdots-\frac{1}{(n-2)!} f^{(n)}(a) \cdot(x-a)^{n-2} \\
& -M(n+1) n(x-a)^{n-1}
\end{aligned}
$$

$g^{(n)}(x)=f^{(n)}(x)-f^{(n)}(a)-M(n+1)!(x-a)$
$g^{(n+1)}(x)=f^{(n+1)}(x)-M(n+1)!$
since $g(a)=g(b)=0$ by (7) and (6) respectively and $g(x)$ continuous on $[a, b]$ and derivable on (a, b), by Rolle's theorem

$$
g^{\prime}\left(c_{1}\right)=0 \quad \text { for some } \quad c_{1} \in(a, b)
$$

since $g^{\prime}(a)=g^{\prime}\left(c_{1}\right)=0$ and $g^{\prime}(x)$ continuous on $[a, b]$ and derivable on (a, b), by Rolle's theorem

$$
\begin{array}{lcc}
g^{\prime \prime}\left(c_{2}\right)=0 & \text { for some } & c_{2} \in\left(a, c_{1}\right) \\
\vdots & \\
g^{(n)}\left(c_{n}\right)=0 & \text { for some } & c_{n} \in\left(a, c_{n-1}\right) \\
g^{(n+1)}\left(c_{n+1}\right)=0 & \text { for some } & c_{n+1} \in\left(a, c_{n}\right)
\end{array}
$$

Putting $x=c_{n+1}$ in (11)

$$
\begin{aligned}
g^{(n+1)}\left(c_{n+1}\right) & =f^{(n+1)}\left(c_{n+1}\right)-M(n+1)! \\
0 & =f^{(n+1)}\left(c_{n+1}\right)-M(n+1)! \\
M & =\frac{1}{(n+1)!} f^{(n+1)}\left(c_{n+1}\right)
\end{aligned}
$$

Putting $c_{n+1}=c \in(a, b)$

$$
M=\frac{1}{(n+1)!} f^{(n+1)}(c) \quad \rightarrow(12)
$$

Putting in (5)

$$
f(b)=P_{n}(b)+\frac{1}{(n+1)!} f^{(n+1)}(c)(b-a)^{n+1}
$$

Hence the theorem is proved.
Replacing b by x

$$
f(x)=P_{n}(x)+\frac{1}{(n+1)!} f^{(n+1)}(c)(x-a)^{n+1}
$$

MACLAURIN'S SERIES

Let $f(x)$ be a function, if $f(x)$ has $(n+1)$ derivatives at $x=0$, the following is the Maclaurin's series.

$$
f(x)=f(0)+f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(0)+\cdots+R_{n}(x)
$$

For equality $R_{n}(x) \rightarrow 0$ as n
where

$$
R_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(c) \cdot(x)^{n+1}
$$

General Form of the Polynomial and n :
Macluarin's polynomial for $\sin x$ is
$P_{n}(x)=\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\cdots \pm$ nth term
There is a confusion for n, when the polynomial is written in general form, such that

$$
P_{n}(x)=\sin x=\sum_{k=0}^{n} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}
$$

it is wrong because if $n=5$, then

$$
P_{5}(x)=\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\frac{x^{11}}{11!}
$$

which is wrong, because

$$
\begin{aligned}
& \qquad \begin{aligned}
P_{5}(x)=\sin x & =f(0)+\frac{x}{1!} f^{(1)}(0)+\frac{x^{2}}{2!} f^{(2)}(0) \\
& +\frac{x^{3}}{3!} f^{(3)}(0)+\frac{x^{4}}{4!} f^{(4)}(0)+\frac{x^{5}}{5!} f^{(5)}(0) \\
& =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}
\end{aligned} \\
& \text { The solution of this problem. Write down the general term }
\end{aligned}
$$

of the polynomial
General term $=\frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}, \quad k=0,1,2.3, \cdots$
So $n=2 k+1 \Rightarrow k=\frac{n-1}{2}$
The general form of the polynomial is

$$
P_{n}(x)=\sin x=\sum_{k=0}^{\frac{n-1}{2}} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}
$$

which is true.
For example, if $n=5$

$$
\begin{aligned}
P_{5}(x)=\sin x & =\sum_{k=0}^{2} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!} \\
& =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}
\end{aligned}
$$

which is exactly true.

EXAMPLES FOR TAYLOR AND MACLAURIN POLYNOMIAL:
Example 9.1:
Write down the first n terms, remainder and the general form of order n of Maclaurin polynomial to the function

$$
f(x)=\sin x
$$

(a) Using Maclaurin polynomial find and approximate value of $\sin \pi / 4$, correct to five decimal places, for $n=5$.
(b) (i) Find remainder and approximate value of $\sin \pi / 6$, for $n=3$.
(ii) Find the value of c such that $\sin \pi / 6=0.5$.
(c) Prove that $f(x)=P_{5}(x)$, correct to one decimal places for all $x \in\left(0, \frac{\pi}{2}\right)$.

Solution:

n	$f^{(n)}(x)$	$f^{(n)}(0)$
0	$\sin x$	0
1	$\cos x$	1
2	$-\sin x$	0
3	$-\cos x$	-1
4	$\sin x$	0
5	$\cos x$	1
6	$-\sin x$	0
\vdots	\vdots	\vdots
n	$\pm \operatorname{sins}$ or $\pm \cos x$	

$$
\begin{aligned}
f(x) & =P_{n}(x)+R_{n}(x) \\
& =f(0)+\frac{x}{1!} f^{(1)}(0)+\frac{x^{2}}{2!} f^{(2)}(0)+\frac{x^{3}}{3!} f^{(3)}(0) \\
& +\cdots+\frac{x^{n}}{n!} f^{(n)}(0)+\frac{x^{n+1}}{(n+1)!} f^{(n+1)}(c)
\end{aligned}
$$

$\begin{aligned} \sin x= & 0+\frac{x}{1!}(1)+0+\frac{x^{3}}{3!}(-1)+0+\frac{x^{5}}{5!}(-1)+\cdots \\ & +\frac{x^{n+1}}{n+1)!} f^{n+1}(c)\end{aligned}$
where

$$
P_{n}(x)=P_{2 k+1}(x)=\sum_{k=0}^{\frac{n-1}{2}} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!} \quad \text { and }
$$

$$
R_{n}(x)=\frac{x^{n+1}}{(n+1)!} f^{(n+1)}(c)
$$

(a) $n=5 \Rightarrow 2 k+1=5 \Rightarrow k=2$

$$
\begin{aligned}
& P_{5}(x)=\sum_{k=0}^{2} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!} \\
&=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} \\
& \text { Figure } 9.5
\end{aligned}
$$

SO

$$
f\left(\frac{\pi}{4}\right) \cong P_{3}\left(\frac{\pi}{4}\right)
$$

Figure 9.5

Figure 9.6

$$
\begin{aligned}
f(\pi / 6) & =P_{3}(\pi / 6)+R_{3}(\pi / 6) \\
\sin \frac{\pi}{6} & =\frac{\pi}{6}-\frac{\left(\frac{\pi}{6}\right)^{3}}{3!}+\frac{\left(\frac{\pi}{6}\right)^{4}}{4!} f^{(4)}(c) \\
& =0.499674+0.003132 \sin c
\end{aligned}
$$

Approximate value of $\sin \frac{\pi}{6}=0.499674$
Remainder $=0.003132$ sinc
(ii) Exact value of $\sin \left(\frac{\pi}{6}\right)$ is 0.5 (i.e. $\sin \left(\frac{\pi}{6}\right)=0.5$), so

$$
\begin{aligned}
0.5 & =0499674+0.003132 \sin c \\
c & =0.10427 \in\left(0, \frac{\pi}{6}\right)
\end{aligned}
$$

(c) $n=5 \Rightarrow 2 k+1=5 \Rightarrow k=2$

$$
\begin{aligned}
P_{5}(x) & =\sum_{k=0}^{2} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!} \\
& =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}
\end{aligned}
$$

Since

$$
\begin{aligned}
& f(\pi / 2)=P_{5}(\pi / 2)+R_{5}(\pi / 2) \\
& \begin{aligned}
\sin \frac{\pi}{2} & =\frac{\pi}{2}-\frac{\left(\frac{\pi}{2}\right)^{3}}{3!}+\frac{\left(\frac{\pi}{2}\right)^{5}}{5!}+\frac{\left(\frac{\pi}{2}\right)^{6}}{6!} f^{(6)}(c) \\
& =1.004-0.02 \operatorname{sinc} \quad \rightarrow(1)
\end{aligned}
\end{aligned}
$$

since $0<\sin c<1$ for all $c \in\left(0, \frac{\pi}{2}\right)$, so
$R_{5}\left(\frac{\pi}{2}\right)=-0.02 \operatorname{sinc} \rightarrow 0$, correct to one decimal place.
since $\left|R_{5}(x)\right|<\left|R_{5}\left(\frac{\pi}{2}\right)\right|$ for all $x \in\left(0, \frac{\pi}{2}\right)$
so $R_{5}(x) \rightarrow 0$,correct to one decimal place, $\forall x \in\left(0, \frac{\pi}{2}\right)$.
Thus $f(x)=P_{n}(x)$, correct to one decimal, $\forall x \in\left(0, \frac{\pi}{2}\right)$.
Example 9.2:
Write down the first n terms, remainder in term of c and the general form of the Maclaurin polynomial for the following function

$$
f(x)=e^{x} \quad \text { for } \quad-\infty<x<\infty
$$

(a) Find the approximate value and remainder in term of c when $x=3$ and $n=4$.
(b) The exact value of e^{3} is 20.0855 , correct to four
decimal places, find the remainder.
(c) Prove that $c \in(0,3)$.

Solution:

k	$f^{(k)}(x)$	$f^{(k)}(0)$
0	e^{x}	1
1	e^{x}	1
2	e^{x}	1
3	e^{x}	1
4	e^{x}	1
5	e^{x}	\vdots
\vdots	\vdots	
n	e^{x}	
$n+1$		

Maclaurin's series for e^{x} is
$f(x)=f(0)+\frac{x}{1!} f^{(1)}(0)+\frac{x^{2}}{2!} f^{(2)}(0)+\frac{x^{3}}{3!} f^{(3)}(0)$
$+\frac{x^{4}}{4!} f^{(4)}(0)+\frac{x^{5}}{5!} f^{(5)}(0)+\cdots+\frac{x^{n}}{n!} f^{(n)}(0)$
$+\frac{x^{n+1}}{(n+1)!} f^{(n+1)}(c)$
$e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\cdots+\frac{x^{n}}{n!}+\frac{x^{n+1}}{(n+1)!} e^{c}$
General term $=\frac{x^{k}}{k!}, k=0,1,2,3 . \cdots$
So $n=k \quad \Rightarrow \quad k=n$
The general form of the polynomial is

$$
P_{n}(x)=e^{x} \cong \sum_{k=0}^{n} \frac{x^{k}}{k!}
$$

(a) For $n=4$

$$
P_{4}(x)=e^{x} \cong \sum_{k=0}^{4} \frac{x^{k}}{k!}
$$

So that

$$
e^{x}=P_{4}(x)+R_{4}(x)
$$

Figure 9.7

$$
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!} e^{c}
$$

For $x=3$

$$
\begin{aligned}
e^{3} & =1+\frac{3}{1!}+\frac{3^{2}}{2!}+\frac{3^{3}}{3!}+\frac{3^{4}}{4!}+\frac{3^{5}}{5!} \\
& =16.375+2.025 e^{c}
\end{aligned}
$$

Approximate value of e^{3} :

$$
e^{3} \cong P_{4}(3)=16.375
$$

Figure 9.7
Remainder in term of c :

$$
R_{4}(3)=0.025 e^{c}
$$

MI MIPQSOOD ATI ASSISTANT PROFESSOR OF MATHEMATICS

where Maclaurin polynomial is

$$
\begin{aligned}
P_{n}(x) & =1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\cdots+\frac{x^{n}}{n!} \\
& =\sum_{k=0}^{n} \frac{x^{n}}{n!}
\end{aligned}
$$

and the remainder

$$
R_{n}(x)=\frac{x^{n+1}}{(n+1)!} e^{c}
$$

(a)

$$
\begin{aligned}
P_{6}(x) & =\sum_{k=0}^{6} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!} \\
e^{x} & \cong P_{6}(x)=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!} \\
e^{3} & \cong P_{6}(3)=1+\frac{3}{1!}+\frac{3^{2}}{2!}+\frac{3^{3}}{3!}+\frac{3^{4}}{4!}+\frac{3^{5}}{5!}+\frac{3^{6}}{6!}
\end{aligned}
$$

$$
=19.4125
$$

(b)

$$
e^{2} \cong P_{6}(2)=1+\frac{2}{1!}+\frac{2^{2}}{2!}+\frac{2^{3}}{3!}+\frac{2^{4}}{4!}+\frac{2^{5}}{5!}+\frac{2^{6}}{6!}
$$

$$
=7.355556
$$

The remainder is

$$
R_{6}(2)=f(2)-P_{6}(2)
$$

$$
=7.389056-7.355556
$$

$$
=0.0335
$$

Figure 9.8

AUMPHOR

TM. MIAQSTOOD ATI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOUNLOAD

ALL BOOKS AND CD ON MATHEMATICS BY
M. MAQSOOD ALI FROM WEBSITE

[^0](a) $\begin{aligned} P_{4}(2) & =\frac{1}{5}-\frac{2}{25}+\frac{2^{2}}{125}-\frac{2^{3}}{625}+\frac{2^{4}}{3125} \\ & =0.14432\end{aligned}$

$$
R_{4}(2)=-\frac{2^{5}}{(c+5)^{6}}=-\frac{32}{(c+5)^{6}}
$$

Now

$$
\begin{aligned}
R_{4}(2) & =f(2)-P_{4}(2) \\
& =0.142857-0.14432 \\
& =-0.001463 \\
& \quad \text { Figure } 9.9
\end{aligned}
$$

(b) For the value of c

$$
\begin{aligned}
R_{4}(2) & =-\frac{32}{(c+5)^{6}} \\
-0.001463 & =-\frac{32}{(c+5)^{6}} \\
c & =0.288318 \in(0,2)
\end{aligned}
$$

Example 9.5:
Find the general form of Taylor polynomial about 1
for the function
$f(x)=\ln x$

Solution:		
n	$f^{(n)}(x)$	$f^{(n)}(1)$
0	$\ln x$	0
1	$x^{-1}=\frac{1}{x}$	1
2	$-x^{-2}=\frac{-1}{x^{2}}$	-1
3	$2 x^{-3}=\frac{2!}{x^{3}}$	$2!$
4	$-6 x^{-4}=\frac{-3!}{x^{4}}$	$-3!$
5	$24 x^{-5}=\frac{4!}{x^{5}}$	$4!$

$f(x)=f(1)+\frac{(x-1)}{1!} f^{(1)}(1)+\frac{(x-1)^{2}}{2!} f^{(2)}(1)$
$\quad+\frac{(x-1)^{3}}{3!} f^{(3)}(1)+\frac{(x-1)^{4}}{4!} f^{(4)}(1)+\frac{(x-1)^{5}}{5!} f^{(5)}(1)$

$$
\begin{aligned}
& \ln x= 0+(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}-\frac{1}{4}(x-1)^{4} \\
&+\frac{1}{5}(x-1)^{5}+\cdots \\
&=(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}-\frac{1}{4}(x-1)^{4} \\
&+\frac{1}{5}(x-1)^{5}+\cdots \\
& \text { The general term is }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(-1)^{k}}{k+1}(x-1)^{k+1}, k=0,1,2,3, \cdots \\
& \text { Since } n=k+1 \quad \Rightarrow \quad k=n-1
\end{aligned}
$$

General expression of the polynomial is

$$
P_{n}(x)=\sum_{k=0}^{n-1} \frac{(-1)^{k}}{k+1}(x-1)^{k+1}
$$

Example 9.6:
Find the general form of Taylor polynomial and remainder about a for the function

$$
f(x)=\ln x
$$

(a) Find the approximate value and remainder (in term of c) of $\ln 6$ using Taylor's polynomial for $n=4$ about 1 and 5.
(b) $\ln 6=1.7917595$, correct to six decimal places, find the approximate value and remainder of $\ln 6$ by Taylor's polynomial for $\mathrm{n}=4$ about 10 and prove that $c \in(6,10)$.
Solution:

n	$f^{(n)}(x)$	$f^{(n)}(a)$
0	$\ln x$	$\ln a$
1	$x^{-1}=\frac{1}{x}$	$\frac{1}{a}$
2	$-x^{-2}=\frac{-1}{x^{2}}$	$\frac{-1}{a^{2}}$
3	$2 x^{-3}=\frac{2!}{x^{3}}$	$\frac{2!}{a^{3}}$
4	$-6 x^{-4}=\frac{-3!}{x^{4}}$	$\frac{-3!}{a^{4}}$
5	$24 x^{-5}=\frac{4!}{x^{5}}$	$\frac{4!}{a^{5}}$

并 Urrifor

MI. MIAQSOOD ATI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
all books and cd on MATHEMATICS

- BY
M. MAQSOOD ALI

FROM WEBSITE
www.mathbunch .com

The remainder is

$$
R_{4}(6)=\frac{(-1)^{4}(6-1)^{5}}{5 c^{5}}=\frac{5^{5}}{5 c^{5}}
$$

For $n=4$, about $a=5$ and $x=6$:

$$
\begin{aligned}
P_{4}(6) & =\ln 5+\sum_{k=0}^{3} \frac{(-1)^{k}(6-5)^{k+1}}{(k+1) a^{k+1}} \\
& =1.6094379+\frac{1}{5}-\frac{1^{2}}{2 \times 5^{2}}+\frac{1^{3}}{3 \times 5^{3}}-\frac{1^{4}}{4 \times 5^{4}} \\
& =1.7917046
\end{aligned} \quad \quad \quad \text { Figure } 9.11
$$

The remainder is

$$
R_{4}(6)=\frac{(-1)^{4}(6-5)^{5}}{5 c^{5}}=\frac{1}{5 c^{5}}
$$

(b) For $n=4$, about $a=10$ and $x=6$:

$$
\begin{aligned}
P_{4}(6) & =\ln 10+\sum_{k=0}^{3} \frac{(-1)^{k}(6-10)^{k+1}}{(k+1) 10^{k+1}} \\
& =2.302585+\frac{(-4)}{10}-\frac{(-4)^{2}}{2 \times 10^{2}}+\frac{(-4)^{3}}{3 \times 10^{3}}-\frac{(-4)^{4}}{4 \times 10^{4}} \\
& =1.7996517 \quad \quad \quad \text { Figure } 9.12
\end{aligned}
$$

The remainder is

$$
R_{4}(6)=\frac{(-1)^{4}(6-10)^{5}}{5 c^{5}}=-\frac{1024}{5 c^{5}}
$$

Since

$$
\begin{aligned}
R_{4}(6) & =\ln 6-P_{4}(6) \\
& =1.7917595-1.7996517 \\
& =-0.0078922
\end{aligned}
$$

Figure 9.12

For the value of c

$$
\begin{aligned}
-\frac{1024}{5 c^{5}} & =-0.0078922 \\
c & =7.635 \in(6,10)
\end{aligned}
$$

[^0]: WwW.mathbunch.com

