

Chapter 9

TAYLOR'S AND MACLAURIN'S SERIES

The values of all real valued functions at any real number can be calculated by a scientific calculator. The buttons on scientific calculator give an idea that almost all real valued functions are formed by $x^{m/n}$, ten numerals 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and four operations +, -, \times , \div except the functions involving $log_b x$, b^x and trigonometric functions, where m, n and b are real numbers. These functions are also represented by a polynomial or a series of x. An approximate value of e^x , sinx or cosx can be found for a real value x by pressing a button on a calculator. All the values of these trigonometric functions are not fed in the calculator because there are infinite values, so a program is fed in a calculator or a computer which are based on polynomials. Taylor's polynomials of degree n for e^x and cosx centred at zero are given below, where n is a non-negative integer.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!}$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + \frac{(-1)^{n} x^{2n}}{(2n)!}$$

Extending Taylor's polynomials obtain a power series that represents the function exactly.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$
$$cosx = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!}$$

Truncation error occurs when the series of a function f(x) is truncated to finite number of terms, which is a polynomial, to calculate the value of the function for a real value x = a. The round off error arises as the power of x increases of the polynomial.

Numerical Analysis, a branch of mathematics is studied to learn how mathematical problems computerized to solve them. Almost all the topics of Numerical Analysis related to calculate the values of the functions for a real value of x are based on polynomials. Following topics from Numerical Analysis explain how polynomial forms.

- Curve fitting
- Interpolating polynomials
- Lagrangian polynomials
- Divided differences

The polynomials are formed using the above methods following a pattern and is used for computer programming. The following polynomials do not follow a pattern.

- $2x^5 6x^2 + 9$
- $6x^8 2x^2 + 3x$
- $x^7 + 5x^4 + 2x + 6$

Above polynomials can be represented by the polynomials which follow a pattern using the above methods. Taylor's series expresses most functions as a power series based on derivatives of the functions. Taylor's series is expanded about a point $x=a\in\mathbb{R}$, when a=0 the series is called Maclaurin's series.

Polynomials and Value of the functions:

The accuracy of the value of a function f(x) depends on number of terms of its polynomial.

$$f(x) \cong P_n(x)$$

More terms of polynomial gives more accuracy in the value of the function.

Taylor's series of sinx is

$$cosx = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

This series gives exact value of cosx.

Taylor's polynomial for cosx is

$$cosx = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

The function cosx and its Taylor's polynomial of degree 1, 4 and 6 are given below.

$$\cos x = P_1(x) = 1 - \frac{x^2}{2!}$$

$$cosx = P_4(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$$

$$cosx = P_6(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}$$

The graphs of cosx and its polynomials between 0 and 2π are given below.

Figure 9.1

All graphs are drawn from (0,0) but $P_{12}(x)$ is the nearest graph to the graph of $\cos x$ between 0 and 2π .

TAYLOR'S SERIES

If f(x) is a function and all derivatives of f(x) exist at x=a, then

$$f(x) = f(a + (x - a))$$

$$= f(a) + f'(a).(x - a) + \frac{1}{2!}f''(a).(x - a)^{2} + \frac{1}{3!}f'''(a).(x - a)^{3} + \dots + \frac{1}{n!}f^{(n)}(a).(x - a)^{n} + R_{n}(x)$$

when
$$R_n(x) \to 0$$
 as $n \to \infty$

where
$$R_n(x) = \frac{1}{(n+1)!} f^{n+1}(c)(x-a)^{n+1}$$
 for $c \in (a,b)$

Proof:

The following is the proof for a < b. The proof for a > b is left for the reader. $P_n(x)$ is a Taylor's polynomial of degree n.

$$P_n(x) = f(a) + f'(a).(x - a) + \frac{1}{2!}f''(a).(x - a)^2 + \frac{1}{3!}f'''(a).(x - a)^3 + \dots + \frac{1}{n!}f^{(n)}(a).(x - a)^n \to (1)$$

In general $P_n(x)$ is equal to f(x) for some values of $x \in \mathbb{R}$, but not for all values, as shown in the following figures 9.2 (a), (b).

Figure 9.2 (a), (b)

 $U_n(x)$ is another polynomial such that

AUTHOR

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD

ALL BOOKS AND CD ON MATHEMATICS

RY

M. MAQSOOD ALI

FROM WEBSITE

Figure 9.4

The difference of f(x) and $U_n(x)$ is a function g(x) such that

$$g(x) = f(x) - U_n(x)$$
 $\rightarrow (6$

$$g(x) = f(x) - f(a) - f'(a) \cdot (x - a) - \frac{1}{2!} f''(a) \cdot (x - a)^2 - \frac{1}{3!} f'''(a) \cdot (x - a)^3$$
$$- \dots - \frac{1}{n!} f^{(n)}(a) \cdot (x - a)^n - M(x - a)^{n+1}$$
 \rightarrow (7)

$$g'(x) = f'(x) - f'(a) - f''(a) \cdot (x - a) - \frac{1}{2!} f'''(a) \cdot (x - a)^{2}$$
$$- \dots - \frac{1}{(n-1)!} f^{(n)}(a) \cdot (x - a)^{n-1} - M(n+1)(x - a)^{n}$$
 \rightarrow (8)

$$g''(x) = f''(x) - f''(a) - f'''(a) \cdot (x - a) - \dots - \frac{1}{(n-2)!} f^{(n)}(a) \cdot (x - a)^{n-2}$$
$$-M(n+1)n(x-a)^{n-1} \to (9)$$

$$g^{(n)}(x) = f^{(n)}(x) - f^{(n)}(a) - M(n+1)!(x-a)$$

$$g^{(n+1)}(x) = f^{(n+1)}(x) - M(n+1)!$$

$$\to (10)$$

$$\to (11)$$

since g(a) = g(b) = 0 by (7) and (6) respectively and g(x) continuous on [a,b] and derivable on (a,b), by Rolle's theorem

$$g'(c_1) = 0$$
 for some $c_1 \in (a, b)$

since $g'(a) = g'(c_1) = 0$ and g'(x) continuous on [a,b] and derivable on (a,b), by Rolle's theorem

$$g''(c_2) = 0$$
 for some $c_2 \in (a, c_1)$
 \vdots
 $g^{(n)}(c_n) = 0$ for some $c_n \in (a, c_{n-1})$

$$g^{(n+1)}(c_{n+1}) = 0$$
 for some $c_{n+1} \in (a, c_n)$

Putting $x = c_{n+1}$ in (11)

$$g^{(n+1)}(c_{n+1}) = f^{(n+1)}(c_{n+1}) - M (n+1)!$$

$$0 = f^{(n+1)}(c_{n+1}) - M (n+1)!$$

$$M = \frac{1}{(n+1)!} f^{(n+1)}(c_{n+1})$$

Putting $c_{n+1} = c \in (a, b)$

$$M = \frac{1}{(n+1)!} f^{(n+1)}(c)$$
 \rightarrow (12)

Putting in (5)

$$f(b) = P_n(b) + \frac{1}{(n+1)!} f^{(n+1)}(c) (b-a)^{n+1}$$
 , $c \in (a,b)$

Hence the theorem is proved.

Replacing b by x

$$f(x) = P_n(x) + \frac{1}{(n+1)!} f^{(n+1)}(c)(x-a)^{n+1}$$
MACLAURIN'S SERIES

Let f(x) be a function, if f(x) has (n + 1) derivatives at x = 0, the following is the Maclaurin's series.

$$f(x) = f(0) + f'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \dots + R_n(x)$$

where

$$R_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(c).(x)^{n+1}$$

General Form of the Polynomial and *n***:**

Macluarin's polynomial for sinx is

$$P_n(x) = sinx = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \dots \pm nth \ term$$

There is a confusion for n, when the polynomial is written in general form, such that

$$P_n(x) = \sin x = \sum_{k=0}^{n} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$$

it is wrong because if n = 5, then

$$P_5(x) = \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \frac{x^{11}}{11!}$$

which is wrong, because

$$P_5(x) = sinx = f(0) + \frac{x}{1!} f^{(1)}(0) + \frac{x^2}{2!} f^{(2)}(0)$$

$$+ \frac{x^3}{3!} f^{(3)}(0) + \frac{x^4}{4!} f^{(4)}(0) + \frac{x^5}{5!} f^{(5)}(0)$$

$$= x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
The solution of this problem. Write down the general term

of the polynomial

General term =
$$\frac{(-1)^k x^{2k+1}}{(2k+1)!}$$
, $k = 0,1,2.3,...$
So $n = 2k+1 \implies k = \frac{n-1}{2}$

So
$$n = 2k + 1 \implies k = \frac{n-1}{2}$$

The general form of the polynomial is

$$P_n(x) = sinx = \sum_{k=0}^{\frac{n-1}{2}} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$$

which is true.

For example, if n = 5

$$P_5(x) = \sin x = \sum_{k=0}^{2} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$$
$$= x - \frac{x^3}{2!} + \frac{x^5}{5!}$$

which is exactly true.

EXAMPLES FOR TAYLOR AND MACLAURIN POLYNOMIAL:

Example 9.1:

Write down the first n terms, remainder and the general form of order \boldsymbol{n} of Maclaurin polynomial to the function

$$f(x) = sinx.$$

- (a) Using Maclaurin polynomial find and approximate value of $\sin \pi/4$, correct to five decimal places, for n=5.
- (b) (i) Find remainder and approximate value of $sin\pi/6$, for n=3.
 - (ii) Find the value of c such that $\sin \pi/6 = 0.5$.
- (c) Prove that $f(x) = P_5(x)$, correct to one decimal places for all $x \in (0, \frac{\pi}{2})$.

Solution:

Solution		
n	$f^{(n)}(x)$	$f^{(n)}(0)$
0	sinx	0
1	cosx	1
2	-sinx	0
3	-cosx	-1
4	sinx	0
5	cosx	1
6	-sinx	0
:	:	
n	$\pm sins$ or $\pm cosx$	

$$f(x) = P_n(x) + R_n(x)$$

$$= f(0) + \frac{x}{1!} f^{(1)}(0) + \frac{x^2}{2!} f^{(2)}(0) + \frac{x^3}{3!} f^{(3)}(0)$$

$$+ \dots + \frac{x^n}{n!} f^{(n)}(0) + \frac{x^{n+1}}{(n+1)!} f^{(n+1)}(c)$$

$$sinx = 0 + \frac{x}{1!}(1) + 0 + \frac{x^3}{3!}(-1) + 0 + \frac{x^5}{5!}(-1) + \cdots + \frac{x^{n+1}}{(n+1)!}f^{n+1}(c)$$

where

$$P_n(x) = P_{2k+1}(x) = \sum_{k=0}^{\frac{n-1}{2}} \frac{(-1)^k x^{2k+1}}{(2k+1)!} \quad \text{and} \quad$$

$$R_n(x) = \frac{x^{n+1}}{(n+1)!} f^{(n+1)}(c)$$
(a) $n = 5 \implies 2k + 1 = 5 \implies k = 2$

$$P_5(x) = \sum_{k=0}^{2} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$$

$$= x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
Figure 9.5

SO

$$f(\frac{\pi}{4}) \cong P_3(\frac{\pi}{4})$$

$$sin \pi/4 \cong \frac{\pi}{4} - \frac{(\frac{\pi}{4})^3}{3!} + \frac{(\frac{\pi}{4})^5}{5!}$$

$$= 0.785398 - 0.080796 + 0.002490$$

$$= 0.707142$$

$$= 0.707144 \quad \text{(correct to five decimal)}$$
(b) (i) $n = 3 \implies 2k + 1 = 3 \implies k = 1$

$$P_3(x) = \sum_{k=0}^{1} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$$

$$= x - \frac{x^3}{3!}$$

Now

$$f(\pi/6) = P_3(\pi/6) + R_3(\pi/6)$$

$$sin\frac{\pi}{6} = \frac{\pi}{6} - \frac{\left(\frac{\pi}{6}\right)^3}{3!} + \frac{\left(\frac{\pi}{6}\right)^4}{4!} f^{(4)}(c)$$

$$= 0.499674 + 0.003132 sinc$$
Approximate value of $sin\frac{\pi}{6} = 0.499674$

Remainder = $0.003132 \, sinc$

Remainder =
$$0.003132 \, sinc$$

(ii) Exact value of $sin\left(\frac{\pi}{6}\right)$ is 0.5 (i.e. $sin\left(\frac{\pi}{6}\right) = 0.5$), so $0.5 = 0499674 + 0.003132 \, sinc$
 $c = 0.10427 \in (0, \frac{\pi}{6})$
(c) $n = 5 \Rightarrow 2k + 1 = 5 \Rightarrow k = 2$

$$P_5(x) = \sum_{k=0}^{2} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$$

Figure 9.5

Figure 9.6

Since

$$f(\pi/2) = P_5(\pi/2) + R_5(\pi/2)$$

$$sin \frac{\pi}{2} = \frac{\pi}{2} - \frac{(\frac{\pi}{2})^3}{3!} + \frac{(\frac{\pi}{2})^5}{5!} + \frac{(\frac{\pi}{2})^6}{6!} f^{(6)}(c)$$

$$= 1.004 - 0.02 \, sinc \qquad \to (1)$$
since $0 < sinc < 1$ for all $c \in (0, \frac{\pi}{2})$, so

 $R_5\left(\frac{\pi}{2}\right) = -0.02 \ sinc \rightarrow 0$, correct to one decimal place.

since
$$|R_5(x)| < \left| R_5\left(\frac{\pi}{2}\right) \right|$$
 for all $x \in \left(0, \frac{\pi}{2}\right)$

so $R_5(x) \to 0$, correct to one decimal place, $\forall x \in (0, \frac{\pi}{2})$.

Thus $f(x) = P_n(x)$, correct to one decimal, $\forall x \in (0, \frac{\pi}{2})$.

Example 9.2:

Write down the first n terms, remainder in term of c and the general form of the Maclaurin polynomial for the following function

$$f(x) = e^x$$
 for $-\infty < x < \infty$.

- (a) Find the approximate value and remainder in term of c when x = 3 and n = 4.
- (b) The exact value of e^3 is 20.0855, correct to four decimal places, find the remainder.
- (c) Prove that $c \in (0,3)$.

Solution:

k	$f^{(k)}(x)$	$f^{(k)}(0)$
0	e^x	1
1	e^x	1
2	e^{x} e^{x} e^{x}	1
3	e^x	1
4	e^{x} e^{x}	1
5	e^x	1
:	÷	:
n	e^x e^x	
n+1	e^x	

Maclaurin's series for e^x is

$$f(x) = f(0) + \frac{x}{1!} f^{(1)}(0) + \frac{x^2}{2!} f^{(2)}(0) + \frac{x^3}{3!} f^{(3)}(0) + \frac{x^4}{4!} f^{(4)}(0) + \frac{x^5}{5!} f^{(5)}(0) + \dots + \frac{x^n}{n!} f^{(n)}(0) + \frac{x^{n+1}}{(n+1)!} f^{(n+1)}(c)$$

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \dots + \frac{x^n}{n!} + \frac{x^{n+1}}{(n+1)!} e^c$$

General term =
$$\frac{x^k}{k!}$$
, $k = 0,1,2,3...$

So $n = k \implies k = n$

The general form of the polynomial is

$$P_n(x) = e^x \cong \sum_{k=0}^n \frac{x^k}{k!}$$

(a) For n=4

$$P_4(x) = e^x \cong \sum_{k=0}^4 \frac{x^k}{k!}$$

So that

$$e^x = P_4(x) + R_4(x)$$

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} e^{-\frac{x^4}{4!}}$$

For x = 3

$$e^3 = 1 + \frac{3}{1!} + \frac{3^2}{2!} + \frac{3^3}{3!} + \frac{3^4}{4!} + \frac{3^5}{5!}e^{-\frac{3^4}{4!}}$$

$$= 16.375 + 2.025e^{c}$$

Approximate value of e^3 :

$$e^3 \cong P_4(3) = 16.375$$
 Figure 9.7

Remainder in term of *c*:

$$R_4(3) = 0.025e^c$$

AUTHOR

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON
MATHEMATICS
BY

M. MAQSOOD ALI FROM WEBSITE

where Maclaurin polynomial is

$$P_n(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \dots + \frac{x^n}{n!}$$

$$= \sum_{k=0}^n \frac{x^n}{n!}$$
and the remainder

$$R_n(x) = \frac{x^{n+1}}{(n+1)!} e^c$$

(a)
$$P_{6}(x) = \sum_{k=0}^{6} \frac{x^{n}}{n!} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \frac{x^{6}}{6!}$$

$$e^{x} \cong P_{6}(x) = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \frac{x^{6}}{6!}$$

$$e^{3} \cong P_{6}(3) = 1 + \frac{3}{1!} + \frac{3^{2}}{2!} + \frac{3^{3}}{3!} + \frac{3^{4}}{4!} + \frac{3^{5}}{5!} + \frac{3^{6}}{6!}$$

(b)
$$e^2 \cong P_6(2) = 1 + \frac{2}{1!} + \frac{2^2}{2!} + \frac{2^3}{3!} + \frac{2^4}{4!} + \frac{2^5}{5!} + \frac{2^6}{6!}$$

The remainder is

$$R_6(2) = f(2) - P_6(2)$$

= 7.389056 - 7.355556
= 0.0335

Figure 9.8

AUTHOR

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON
MATHEMATICS
BY

M. MAQSOOD ALI FROM WEBSITE

(a)
$$P_4(2) = \frac{1}{5} - \frac{2}{25} + \frac{2^2}{125} - \frac{2^3}{625} + \frac{2^4}{3125}$$

= 0.14432
 $R_4(2) = -\frac{2^5}{(c+5)^6} = -\frac{32}{(c+5)^6}$

Now

$$R_4(2) = f(2) - P_4(2)$$

= 0.142857 - 0.14432
= -0.001463

Figure 9.9

(b) For the value of c

$$R_4(2) = -\frac{32}{(c+5)^6}$$

$$-0.001463 = -\frac{32}{(c+5)^6}$$

$$c = 0.288318 \in (0,2)$$

Example 9.5:

Find the general form of Taylor polynomial about 1 for the function $% \left(1\right) =\left(1\right) \left(1\right)$

$$f(x) = lnx$$

Solution:

n	$f^{(n)}(x)$	$f^{(n)}(1)$
0 1	$\ln x$ $x^{-1} = \frac{1}{x}$ $-x^{-2} = \frac{-1}{x^{2}}$ $2x^{-3} = \frac{2!}{x^{3}}$ $-6x^{-4} = \frac{-3!}{x^{4}}$ $24x^{-5} = \frac{4!}{x^{5}}$	0
2	$-x^{-2} = \frac{-1}{x^2}$	-1
3	$2x^{-3} = \frac{2!}{x^3}$	2!
4	$-6x^{-4} = \frac{-3!}{x^4}$	-31
5	$24x^{-5} = \frac{4!}{x^5}$	4!

$$f(x) = f(1) + \frac{(x-1)}{1!} f^{(1)}(1) + \frac{(x-1)^2}{2!} f^{(2)}(1) + \frac{(x-1)^3}{3!} f^{(3)}(1) + \frac{(x-1)^4}{4!} f^{(4)}(1) + \frac{(x-1)^5}{5!} f^{(5)}(1)$$

Figure 9.9

$$lnx = 0 + (x - 1) - \frac{1}{2}(x - 1)^{2} + \frac{1}{3}(x - 1)^{3} - \frac{1}{4}(x - 1)^{4}$$

$$+ \frac{1}{5}(x - 1)^{5} + \cdots$$

$$= (x - 1) - \frac{1}{2}(x - 1)^{2} + \frac{1}{3}(x - 1)^{3} - \frac{1}{4}(x - 1)^{4}$$

$$+ \frac{1}{5}(x - 1)^{5} + \cdots$$

The general term is

$$\frac{(-1)^k}{k+1}(x-1)^{k+1} , k = 0, 1, 2, 3, \dots$$

Since $n = k + 1 \implies k = n - 1$

General expression of the polynomial is

$$P_n(x) = \sum_{k=0}^{n-1} \frac{(-1)^k}{k+1} (x-1)^{k+1}$$

Example 9.6:

Find the general form of Taylor polynomial and remainder about \boldsymbol{a} for the function

$$f(x) = lnx$$

- (a) Find the approximate value and remainder (in term of c) of ln6 using Taylor's polynomial for n=4 about 1 and 5.
- (b) ln6=1.7917595, correct to six decimal places, find the approximate value and remainder of ln6 by Taylor's polynomial for n=4 about 10 and prove that $c\in(6,10)$.

Solution:

Solution	•	
n	$f^{(n)}(x)$	$f^{(n)}(a)$
0	lnx 1	lna 1
1 2	$x^{-1} = \frac{1}{x}$ $-x^{-2} = \frac{-1}{x^2}$ $2x^{-3} = \frac{2!}{x^3}$ $-6x^{-4} = \frac{-3!}{x^4}$ $24x^{-5} = \frac{4!}{x^5}$	
3	$2x^{-3} = \frac{2!}{x^3}$	$\frac{2!}{a^3}$
4	$-6x^{-4} = \frac{-3!}{x_1^4}$	$\frac{-3!}{a_1^4}$
5	$24x^{-5} = \frac{4!}{x^5}$	$\frac{4!}{a^5}$

AUUROR M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON
MATHEMATICS
BY

M. MAQSOOD ALI FROM WEBSITE

The remainder is

$$R_4(6) = \frac{(-1)^4 (6-1)^5}{5c^5} = \frac{5^5}{5c^5}$$

For n = 4, about a = 5 and x = 6:

$$P_4(6) = \ln 5 + \sum_{k=0}^{3} \frac{(-1)^k (6-5)^{k+1}}{(k+1)a^{k+1}}$$

$$= 1.6094379 + \frac{1}{5} - \frac{1^2}{2 \times 5^2} + \frac{1^3}{3 \times 5^3} - \frac{1^4}{4 \times 5^4}$$

$$= 1.7917046$$

Figure 9.11

The remainder is

$$R_4(6) = \frac{(-1)^4 (6-5)^5}{5c^5} = \frac{1}{5c^5}$$
(b) For $n = 4$, about $a = 10$ and $x = 6$:
$$P_4(6) = \ln 10 + \sum_{k=0}^{3} \frac{(-1)^k (6-10)^{k+1}}{(k+1)10^{k+1}}$$

$$= 2.302585 + \frac{(-4)}{10} - \frac{(-4)^2}{2 \times 10^2} + \frac{(-4)^3}{3 \times 10^3} - \frac{(-4)^4}{4 \times 10^4}$$

$$= 1.7996517$$

Figure 9.12

The remainder is

$$R_4(6) = \frac{(-1)^4 (6 - 10)^5}{5c^5} = -\frac{1024}{5c^5}$$

Since

$$R_4(6) = ln6 - P_4(6)$$

= 1.7917595 - 1.7996517
= -0.0078922

For the value of *c*

$$-\frac{1024}{5c^5} = -0.0078922$$

$$c = 7.635 \in (6,10)$$

Figure 9.11

Figure 9.12

