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Chapter 9

TAYLOR'S AND MACLAURIN’'S SERIES

The values of all real valued functions at any real number can be calculated by a scientific

calculator. The buttons on scientific calculator give an idea that almost all real valued functions

are formed by x"/n , ten numerals 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and four operatio -, X, +
except the functions involving log,x, b* and trigonometric functions, wher are real
numbers. These functions are also represented by a polynomialoras imate
value of e*, sinx or cosx can be found for a real value x by pressing a culator
All the values of these trigonometric functions are not fed i e there are

infinite values, so a program is fed in a calculator o
polynomials. Taylor’s polynomials of degree n for e*
where n is a non-negative integer.

e*=1+x+

COSX =

Extending Taylor’s polynomials obta

o0 xn
e 7 ; cee — Z E
n=0
_ x2 N x4 (_1)n x2n
\ 21 T g (2n)!

n=0

Numerical Analysis, a branch of mathematics is studied to learn how mathematical
problems computerized to solve them. Almost all the topics of Numerical Analysis related to
calculate the values of the functions for a real value of x are based on polynomials. Following
topics from Numerical Analysis explain how polynomial forms.
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*  Curve fitting

* Interpolating polynomials
e Lagrangian polynomials

* Divided differences

The polynomials are formed using the above methods following a pattern and is used for
computer programming. The following polynomials do not follow a pattern.

o 2x°—6x%2+4+9
o 6x%—2x%+3x
o x"4+5x*+2x+6

Above polynomials can be represented by the polynomi
above methods. Taylor’s series expresses most functions as a
of the functions. Taylor’s series is expanded about a
called Maclaurin’s series.

Polynomials and Value of the functions:
The accuracy of the value of a function ) depend mber of terms of its polynomial.
Pa(x)

in.the value of the function.

More terms of polynomial gi mo

Taylor’s series of sinx i

X2 .\ x4 ~ o (-1)" X2
21 4! B (2n)!
n=0
This serie s exact value of cosx.
o’ﬂal for cosx is
3 xz x4 3 ® (_1)11 x2n
COSX = 1—E+Z—"' = ZW
n=0
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The function cosx and its Taylor’s polynomial of degree 1, 4 and 6 are given below.

The graphs of cosx and its polynomials between 0 and 2 are given below.

A

A

cosx =Pi(x)=1-

cosx = Py(x) =

cosx = Pg(x) =1 —§+

4!

f(x)=cosx 1“

6!

®

B f(x)= f(x)=cosx
(x)=cosx P (x)
0 : 0 () —
T[ 27 2T 2T
1 B ~14 -1
A A A
14 11 11 P_(x
R () 2
0 ' . t () : =
T 2T T 2T T 2T
-11 1l Ro -1
Figure 9.1

All graphs are drawn from (0,0) but P,,(x) is the nearest graph to the graph of cosx between

0 and 2.
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TAYLOR'’S SERIES

If f(x) is a function and all derivatives of f(x) exist at x = a, then

fG) =fla+(x—a)
1 1
=f@+f'@.(x~a)+f"(@.(x —a)* + 5 f"(@). (x — @)
+ -+ %f(")(a). (x—a)® + R,(x)
when R,(x) > 0 as n - oo

1
T 1)!f"+1(6)(x —a)™  for ce€(ab)

where R, (x) =

Proof:
The following is the proof for a < b. The proof for a > b is left for the reader.
B, (x) is a Taylor’s polynomial of degree n.
1 1
Pa() = f(@) + f'(@). (x — @) + 5, f"(@). (x = a)? + 3/ @ (- a)?
1
ot — (@) (x — )" > (1)
In general P,(x) is equal to f(x) for some values of x € R, bu fo 5, as shown in
the following figures 9.2 (a), (b).

Figure 9.2 (a), (b)
B
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U, (x) is another polynomial such that
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Figure 9.4

= Cht1 Cn Ct’ .02 C b
The difference of f(x) and U, (x) is a function g(x) such that

900 = ()~ Un() - ©)
900 = ) ~ (@) ~ F/(@). (x ~ @) = (@), (x — @) = 3" (@).(x
= FO (@) (x @)~ M~ @) - (
96 = 1)~ /(@) ~ (). (x ~ @) = 5 £ (@). (& — )
_"'_(n_ll)!f(n)(a).(x—a)"_l—M(n+1) 8)
9" ="~ @)= f(@). (x —a) == ¢ A x —a)"?
—M(n + Dn(x —a)™ ! - (9)

9™ @) = FO () - f™(a) — M(n + 1)) > (10)

gD = FI@) — M(n + 1)) - (11)

since g(a) = g(b) =0by (7)a respectively'and g(x) continuous on [a, b] and derivable

on (a, b), by Rolle’s theore
g'(c1) =

since g'(a) = g'(c;) =0 and g’

theorem

ome c; € (a,b)
ntinuous on [a, b] and derivable on (a,b), by Rolle’s

g'(c)) =0 for some ¢ € (a,¢q)
g(n) (Cn) =0 for some cn € (a,cp-1)
g(n+1)(cn+1) =0 forsome Cn+1 € (a,cp)

138



www.mathbunch.com M. MAQSOOD ALI

Putting x = c,44 in (11)
9V (cns1) = F (i) = M (n + 1))
0= f"*"(cpey) =M (n+ 1)!

M= (G, )
(n+1)! ntl

Putting c,.1 = c € (a,b)

M = —— FeD ) 2)
(n+1)!
Putting in (5) \
1

f(b) = P,(b) +

ey AR GICEIO L b)
Hence the theorem is proved.
Replacing b by x
1
FG) =P + 5y, ﬂ%
RIES

series.

f) = f(
For equality R,(x) — 0O

f(n+1) (C) (x)n+1

where X) m+ Dl
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General Form of the Polynomial and n:
Macluarin’s polynomial for sinx is
, x3 x5 x7 x°
P,(x) = sinx = x—§+§—ﬁ+a—---inthterm
There is a confusion for n, when the polynomial is written in
general form, such that
n (_1)kx2k+1
B,(x) = sinx =

) 2k + 1)!
it is wrong because if n = 5, then
¥3 x5 x7  x9 1
Pi(x) =sinx=x——+——5+———

3t 51 7t 9 11!
which is wrong, because

X x2
Ps(x) = sinx = £(0) + 3 fP(0) + 5, f2(0)

x3 x4 x5
+57 PO+ FPO+5 O
x3 x5
BT * 5!

of the polynomial
_1)kx2k+1

2k + 1)!
n—1
So n=2k+1 = k=

General term =
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EXAMPLES FOR TAYLOR AND MACLAURIN POLYNOMIAL:
Example 9.1:

Write down the first n terms, remainder and the
general form of order n of Maclaurin polynomial to the
function

f(x) = sinx.
(@) Using Maclaurin polynomial find and approximate
value of sin /4, correct to five decimal places, forn = 5.
(b) (i) Find remainder and approximate value of sinm /6,
forn = 3.
(i) Find the value of ¢ such that sinm/6 = 0.5.
(c) Provethat f(x) = Ps(x), correct to one decimal

places for all x € (0, g).

Solution:
n F™ () F™(0)
0 sinx
1 COSX
2 —sinx
3 —COoSX
4 sinx
5 cosx
6 —sinx
n +sins or + co

fx) = FR(x) +

-1
2
(_1)kx2k+1
Bu(x) = Papey1 (x) = Z Tkt Dl and
k=0 '

S
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n+1l ( )
— n+1
Fa) = o @)
(@ n=5 = 2k+1=5 = k=2

2 (_1)kx2k+1

Ps(x) =

I
o 2k + 1)!
x3 x5
R TR
Figure 9.5

SO
[R=r@

sinn/4zz T + =

= 0.785398 — 0.080796 + 0.002490

= 0.707142

= 0.70714 (correct to five decimal)

(b)) n=3 =2 2k+1=3 = k=1
1
(_1)kx2k+1
Py(x) = » ~———
3 & gzzc + 1!
x
=X — ?
Figure 9.6
Now
f(/6) = P3(m/6) + R3(1/6)
(2)3 (E)4
sinlt = 5_6_+6_|f(4> 0

6 6 3! 4!
= 0.499674 + 0.0031

Approximate value ofsin% = 0.499674
Remainder = 0.003132 sinc
(ii) Exact value of sin (g) i
0.5 = 0499674 +

c =0.10427 € (O,g

(o)n=5 = 2k+1=5 =2k=

2 (_1)kx2k+1

Ps(x) =

£i 2k +1)!
x3  x°
R TR

142
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f(x)=sinx

Figure 9.5

/g

f(x)=sinx
P3(x)

Figure 9.6
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Since

f(/2) = Ps(n/2) + Rs(n/2)
3 T 5 T
@ & (5
Si"g:g_ é! é! +(26!) O
= 1.004 — 0.02 sinc - (1)

T
since 0<sinc<1 forallce (0, E) , SO

s
Rs (E) = —0.02 sinc — 0 , correct to one decimal place.

since |Rs(x)| < |R5 (%)| forall x € (Og)

so Rs(x) — 0,correct to one decimal place,V x € (0,

NE

)
)

Example 9.2:
Write down the first n terms, remainder in term of c a
the general form of the Maclaurin polynomial for

Thus f(x) = P,(x), correct to one decimal,V x € (0,

NE

following function
f(x) =¢e* for —oo<x<c

(a) Find the approximate value and rem er
cwhenx =3 andn = 4.

(b) The exact value of e3 is 20.08 orrect to fo
decimal places, find the remaind

(c) Prove that ¢ € (0,3).

Solution:
9 @) F®(0)
1
e 1
e* 1
x 1
& ]
e* 1
e.x
ex
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Maclaurin’s series for e* is
x x? x3
fG) = f(0) + 4 FDO) + = FP0) + 57 FD(0)

x* x° X
+ fP@ +57 fPO + 4+ f7(0)

n+1
f(n+1) (C)

x2 x3 x4 xS x" xn+1

X
x_ — — — — — e —
e =ltntaytyta Tttt

C

m+ 1 ¢ y

Xk f(x)= e
General term = i k=0123.

Son=k = k=n
The general form of the polynomial is R(x)

P(x)=e*= ) —

(@) Forn=4

4
P4(x)=ex52% (

k=0 :
Sothat . > X
e* =P, (x) + R.(x 3
+(%) () Figure 9.7
. x x* x3 x*
e _1+E+§+§+Z+
Forx =3
3 3 32 33 3%
e —1+ﬂ+§+§+z +—.

= 16.375 + 2.025¢e°¢
Approximate value of e3:

e® = P,(3) = 16.
Figure 9.7

Remainder in term of c:
R,(3) = 0.025e¢
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where Maclaurin polynomial is

3 x x* x® x* x5 x™
Pn(x)—1+ﬂ+a+§+a+§+'"+ﬁ
nxn
L
k=0
and the remainder
n+1
R = ¢
n(®) (n+1)!e
(a)
6
B wri x x? x3 x* x5 x°
P =) r= ittty byt
k=0
. 3 x x? x3 x* x5 x°
e :Pe(x)—1+ﬂ+a+§+z +a+a
3 32 33 34 5
3 ~ —_— —_— —_— R P
e R TR TR TR T T
= 19.4125

(b)

56 —7.355556

=10.0335

Figure 9.8
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1 2 22 2 24

(@ P =5-55% 125 525 T 3125
= 0.14432
RA(2) = 25 32
4(2) = (c+5° (c+5)°
Now

R,(2) = f(2) — P,(2)
= 0.142857 — 0.14432

= —0.001463
Figure 9.9
(b) For the value of ¢
Ry(2) = 32
BT (e +5)8
0.001463 = 32
' ~ (c+5)8

¢ =0.288318 € (0,2)
Example 9.5:
Find the general form of Taylor polynomial about 1
for the function

f(x) = Inx

Solution:

n F )

f®@

2 _x_z x_21 A

|

3 2x73 = %
4 —6x~* = ! —
> 24x" Q

— N 2
Foo = ry+ C22 pow + £ poq)
—1)3 —1)* —1)°
+EZ D o0y S pe) B2 o)
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1 1 1
lnx=0+(x—l)—z(x—1)2+§(x—1)3—z(x—1)4
TN,
1 2 1 3 1 4
= (x—1)—§(x—1) +§(x—1) —Z(x—l)
e

The general term is

—1)k
§<+)1 (x—1D**1 | k=0,1,23,

Since n=k+1 = k=n-1

General expression of the polynomial is
n-1

—1)k
P = Y gy
k=0

Example 9.6:

Find the general form of Taylor polynomial &
remainder about a for the function

f(x) = Inx

(a) Find the approximate value and remainder (in ter

of c) of In6 using Taylor’s polynomialforn = 4 ab

1and 5.

ou

(b) In6 = 1.7917595, correct to al places,
find the approximate value a by
Taylor’s polynomial for ut. 10 and prove that

c € (6,10).
Solution:
n
0
1 =y a
\2 B -1 -1
) I
= 2! 2!
3 X =73 3
a
4 —3! —3!
4 e = ra
s 4! 4!
5 24x =X_5 E
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The remainder is

D6 -1 _ 5° Y f(x)=Inx
Ri®) =5 =53 . )
Forn =4,abouta =5and x = 6: 2+
3 R (x)
Pi(6) = In5+ ) (L6 = 5™
a\o)=m (k + 1)ak+1 1k
k=0
= 1.6094379 + 1 r + v r '
- 5 2x52 3x5% 4x5% 0 L i Ly
4 6 8
= 1.7917046 Figure 9.11

Figure 9.11
The remainder is

_(=D*6-5° 1
Ri(0) =55 =5
(b) Forn = 4,about a = 10 and x = 6:
S (—1)K(6 — 10)k+1
P,(6) = In10 + & + D10k P

) _ 9 9 (D
10 2x10%2 3x103 4x10*4

= 2.302585 + *

= 1.7996517

Figure 9.12

The remainder is

-1)*(6 — 10)° 1024
R4(6)=( )*( ) _

[0}

5¢° 5¢° »
Since 0 fx)=Inx
R4 (6) = In6 — P4(6) 1 4 5
=1.7917595 — 1.7996517
= —0.0078922 Figure 9.72
For the value of ¢
1024 o )]
5¢5

¢ =7.635€ (6,1
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