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Chapter 8 

ROLL’S AND MEAN VALUE THEOREMS 

 

 

STRICTLY INCREASING FUNCTIONS: 

       A function f is said to be strictly increasing on a set S 

subset � if ����� � �����   for all ��, �� 
 �   such that ��  �  �� 

       The value of a strictly increasing function ���� 

continue increases on increasing the value of �. 

The graph of an strictly increasing function ���� rises up 

as � moves to the right, as shown in the  

 

                                  figure 8.1. 

Examples 8.1: 

(i)   ����  �  5� is a strictly increasing function on the set    

       of real numbers, because ��1� � ��2�           for      1 � 2                     ��2� � ��3�          for       2 � 3 

                  �����  � �����     for all    �� � �� 

 

                   figure 8.2. 

  

 

STEADILY INCREASING FUNCTIONS: 

     A function f is said to be steadily increasing on a set S 

subset of � if ����� � �����   for all  ��, �� 
 �    such that �� � �� 

   The value of a steadily increasing function ���� increase 

or remain unchanged on increasing the value of � as 

shown in 

                                            figure 8.3. 
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Examples 8.2: ���� � ��� is steadily increasing function on the set of 

real numbers. 

���� �
��
�
��

�1    for    � 1 � � � 00      for     0 � � � 11      for     1 � � � 22      for     2 � � � 33       for     3 � � � 4
     

 

 Since      ��0� �  ��1�           for    0 �  1 

                ��0� �  ��0.5�       for     0 �  0.5 "  � is  steadily increasing. 

                   Figure 8.4 

 

STRICTLY DECREASING FUNCTIONS: 

     A function � is said to be strictly decraeasing on a set S 

subset of � if 

 ����� # ����� for all ��, �� $ � such that  �� �  ��. 
The value of strictly decreasing function  ���) continue 

decreases  on increasing  the value of �.  
The graph of a strictly decreasing function  falls as � 

moves right, as shown in  

                                         figure 8.5. 

Examples 8.3: 

                                 ����  �  1
� 

 is a strictly decreasing function on the set of positive  integers. 
Since  ��1�  #  ��2�   for        1 �  2                         ��2�  #  ��3�    for         2 �  3                       ����� # �����    for all   �� �  �� 

                                     figure 8.6. 

STEADILY DECRAEASING FUNCTIONS: 

A function � is said to be steadily decreasing on a 

set  S subset of � if          �����  2 ����� for all �� , ��  $ � such that �� �  �� 

The value of a steadily decreasing function ���� decrease 

or remain unchanged on increasing the value of � as 

shown in 

                                            figure 8.7. 
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Thus � is strictly increases in the neighbourhood of 3, 

Conversely, � is strictly increasing in an open interval  �3, 3 4  5 �. 
  6   ����  #  ��3�  for  � #  3  , � 
 �3, 3 4  5�   6   ����–  ��3� #  0  for    � – 3 #  0 

 

 6                     lim9:;
���� � ��3�

� � 3 # 0  
 6                       �<�a� # 0                                    : �i� 

  � is strictly increasing on an open interval  �3 � 5, 3�  6          ����  �  ��3�  for  � �  3 ;  � $ �3 � 5, 3�   
 6                ���� � ��3� � 0 for  � � 3 � 0    
 

6                                  ���� � ��3�
� � 3 # 0 

 

6                          lim9:;
���� � ��3�

� � 3 # 0 

 6                                              �<�a� # 0                   : �ii� 

 

 Combining above two results we can say that �<�3� # 0  if and only if � is strictly increasing in some  neighbourhood of 3   ?. @ �3 � 5, 3 4 5�. 

Figure 8.9. 

 

(ii)   The proof is left for the reader. Figure 8.10. 

 

Example 8.4: 

Show that the value of � is strictly increasing for all 

 � $ ��∞, �2� and for all � $ �3, ∞� but strictly 

decreasing for all � $ ��2 , 3�. 

 ����  �  1
3 �B � 1

2 �� � 6� 4 5 
Solution:   �<��� � �� � � � 6 � �� � 3��� 4 2� 
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 � is strictly increasing when 

                                  �<��� # 0   6            �� � 3��� 4 2� # 0 

It is possible when both factors have same signs. 

Case-I: 

For strictly increasing: 

 Suppose both factors are non-negative. 

            � � 3 #  0  and  � 4 2 #  0 

                  � #  3   and  � #  �2 

             � $ �3, ∞� and  � $ ��2 , ∞�   
             � $ ��2, ∞� D �3, ∞�  6   � $ �3, ∞�  

Case II:     Suppose both factors are negative. 

            � � 3 �  0 and � 4 2 �  0  
                    � �  3 and � �  �2         � $ ��∞, 3� and � $ ��∞, �2�         � $ ��∞, 3� D��∞, �2� 

        � $ ��∞, �2�  
Hence � is strictly increasing for all � $ ��∞, �2� and for 

all  � $ �3, ∞�. 
For strictly  decreasing: � is strictly decreasing when 

                                                       �<���  � 0.                                         �� � 3��� 4 2� � 0. 

It is possible when both the factors have opposite signs. 

Case-I:  

   Suppose �� � 3� is negative and �� 4 2� is positive 

                        � � 3 � and  � 4 2 # 0       

                           � � 3  and  � # �2     
                  � 
 E– ∞, 3F  and  � 
 ��2, ∞� 

                  � 
 ��∞, 3�  D  ��2, ∞� 

 ⇒            � 
 ��2,3� 

Case-II:   

Suppose �� � 3� is positive and �� 4 2� is negative. 

                     � � 3 # 0 and  � 4 2 � 0 

                            � # 3  and � � �2 

                     � 
 �3, ∞� and  � 
 ��∞, �2� 

                     � 
 �3, �� D ���, �2�   
 ⇒    � 
 G  H  Hence according to case 1 and 2 , � is strictly 

decreasing for � 
 ��2,3�. 
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ROLLE’S THEOREM 
Statement:  � is a function with domain I3, JK, if 

(i)     � is continuous on I3, JK 

(ii)    � is derivable in �3, J� 

(iii)  ��3� � ��J� 

        then there exists at least one real number     

       c 
 �3, J� such that �<�L� � 0. 
Proof:  

 � is continuous on I3, JK 

� is bounded and attains its bounds Gby theorem A‐2H 

Let M and m be the least upper bound and greatest lower 

bound of ����. 
We have two values c,d 
 I3, JK such that  ��L� � O and 

 ��P� � Q 

Thus we have two case 

Case-I: 

 ���� is equal to  ��3� and ��J�. 
                ���� � ��3� � ��J�  ,   � 
 I3, JK    

Figure 8.11 

In this case � is a constant function in the interval 

I3, JK.The derivative of a constant function must be equal 

to zero. 

                      �<��� �  0 for all  � 
 I3, JK 

The theorem is true in this case. 

Case-II: 

  ���� is a variable function. 

⇒          Q R O but  ��3� � ��J� 

⇒   At least one of M and m must be different from  ��3� 

and ��J�, then there are following three cases arises. 

(i)      Q � ��3� � ��J� but  O R ��3� � ��J� 

Figure 8.12a 

(ii)     Q R ��3� � ��J� but O � ��3� � ��J�  
Figure 8.12b 

(iii)    Q R ��3� � ��J�  and O R ��3� � ��J� 

Figure 8.12c 

         Consider the case M R ��3� � ��J� 

Since ��L� � O 2 ���� for all  � 
 I3, JK 

⇒    At � � L the point is a critical point. 

⇒   � is neither strictly increasing nor strictly decreasing 

at  � � L. 
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If we suppose � is strictly increasing at � � L, then we 

can prove it wrong by taking two points L and c + S in 

I3, JK. 
Since M is least upper bound of �. 
⇒        O � ��L� # ��L 4 S� for  L � L 4 S 

⇒        � is not strictly increasing at  � � L 

⇒        If we suppose � is strictly decreasing at � � L, then 

we can also prove it is wrong  by taking two points L � S 

and L in [a,b] 

Since M is least upper bound of �. 

              O � ��L� # ��L � S� for  L # L � S 

⇒          � is not strictly decreasing at  � � L, 
Hence � is neither strictly increasing nor srictly 

decreasing at � �  L. 
⇒        �<�L� T 0 and  �<�L� 0Gby theorem U � 7H 

⇒              �<�L� �  0 for  L 
 �3, J� 

Similarly we can prove for m R ��3� � ��J� 

GEOMETRICAL INTERPRETATION: 

If a function � is continuous on I3, JK and derivable on 

�3, J� and ��3� � ��J�, then there exists at least one 

real number c 
 �3, J� where the tangent is parallel to �-

axis or slope of the tangent is equal to zero. 

(i)   Figure 8.13a:    At least one real number c 
 �3, J� 

where the tangent is parallel to �-axis or slope of the 

tangent is equal to zero.  

(ii)   Figure 8.13b:   More than one real numbers 

 c, d 
 �3, J� where the tangents are parallel to �-axis or 

slope of the tangents is equal to zero.  

   Algebraically: 

If 3 and J are two real roots of ����  �  0, then there 

exists at least one real root of the polynomial 

�<��� �  0  lies between 3 and J                              

Example 8.5:   

Verify Rolle’s theorem for the following function 

              ���� � sin �   ;   � 
�0, W� 

Solution: 

���� � sin �     ;     �
 I0, WK 

                     ��0� � 0 3XP ��W� � 0 

 ���� is continuous on [Y, WK and derivable in �0, W� and                               

                                  ��0� � ��W�. 
So that the conditions of Rolle’s theorem are satisfied.  
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LAGRANGE’S MEAN VALUE THEOREM 
Statement: Let � is a function with domain I3, JK,if 

(i)    � is continuous on I3, JK and  

(ii)   � is derivable on  �3, J� 

Then there exists at least one real number c 
 �3, J� such 

that  

�<�L� �
��J� � ��3�

J � 3
 

Proof:  

Let Z is a function defined as 

                             Z ��� � U ���� 4 [�    : �1� 

where A and B are constants we choose A and B such that             

                              Z�3� � Z�J� 

From(1)  U ��3� 4  [3 � U ��J� 4 [J 

                A ��3� � U ��J� � [J � [3 

                �U G��J� � ��3�H � [�J � 3� 

��J� � ��3�
J � 3

� �
[
U

     : �2� 

Since ���� is continuous on [a,b]and derivable on (a,b) so 

Z��� is continuous on [a,b] and derivable on(a,b) and 

Z�3� � Z�J�, then by Rolle’s theorem there exists at 

least one real number c 
 �3, J� such that  

From(1)          Z<��� � U �<��� 4 [ 

                         Z<�L� � U �<�L� 4 [ 

                                  0 �  U �<�L� 4 [              

�<�L� � �
[
U

               : �3� 

On equating (2) and (3),we get  

��J� � ��3�
J � 3

� �<�L� 

which prove the theorem. 

ANOTHER FORM OF THE THEOREM: 

Suppose that J � 3 4 \, \ # 0 ⇒ I3, JK � I3, 3 4 \K 

Let ] be positive number less than 1 so 0 � ] � 1. 
⇒        ]\ � \    ⇒     3 4 ]\ � 3 4 \ 

⇒                 3 4 ]\ 
 �3, 3 4 \� 

Let   L � 3 4 ]\ 
 �3, 3 4 \� 

Substituting these values in equation (4) we get 

�<�3 4 ]\� �
��3 4 \� � ��3�

\
 ,   0 � ] � 1 
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GEOMETRICAL INTERPRETATION: 

If � is continuous on I3, JK and derivable on �3, J�, then 

there exists at least one real number c 
 �3, J�, where the 

tangent is parallel to the chord which join the points 

�3, ��3�� and �J, ��J��. 
Figure 8.17 

   Slope of the chord joining the points �3, E��3�F and 

 �J, ��J�� is equal to the slope of tangent at L $ �3, J�. 

�^Y_@ Y� `\@ L\YaP �
��J� � ��3�

J � 3
 

 

                   �^Y_@ Y� `\@ `3Xb@X` � �<�L� 

 

Example 8.8: 

Apply mean value theorem to find L $ ��1,1� when  

���� �  5�B � 3�� 4 9� 4 2,       3 � �1 , J � 1   
Solution: 

                    ���� �  5�B � 3�� 4 9� 4 2     :  �1� 

                   �<��� �  15�� � 6� 4 9 

                    �<�L� � 15L� � 6L 4 9 

��3� � ���1� �  �15  

��J�  �  ��1�  � 13  
By mean value of theorem 

�<�L� �
��J� � ��3�

J � 3
 

15L� � 6L 4 9 �
13 4 15

2
 

                              15L� � 6L � 5 � 0  

L �
3 d 2√21

15
$ ��1,1� 
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CAUCHY’S MEAN VALUE THEOREM 
Statement: 

If two functions � and b with domain I3, JK are 

continuous on I3, JK and derivable on �3, J� and if �<��� 

and b<��� do not both vanish for the same value of 

� $ �3, J� then there exists at least one number 

L $ �3, J� such that  

��J� � ��3�
b�J� � b�3�

�
�<�L�
b<�L�

 

Proof:   

    Suppose that Ψ is a fuction defined as  

                  g��� �  U ���� 4  [ b���              : �1� 
where U and [ are constants. 

Substituting � � 3 and � � J in (1) we get  

                     g�3�  �  U ��3�  4 [ b�3� 
                     g�J�  �  U ��J�  4 [ b�J� 
Choose U and [ such that  

                             Ψ�3� � Ψ�J� 

     U ��3�  4  [ b�3�  �  U ��J�  4  [ b�J� 
         U G��J� –  ��3�H  �  �[ Gb�J� –  b�3�H  

                 
��J� � ��3�
b�J� � b�3�

� �
[
U

      : �2� 

Since � and b are continuous on I3, JK and derivable on 

�3, J� so also Ψ ���. 
Ψ<��� � U �<��� 4 [ b<��� 

Ψ is continuous on I3, JK, derivable on �3, J� and 

Ψ�3� � Ψ(b), by Rolle’s theorem there is at least one 

number L $  �3, J� such that 

       Ψ<�L� � 0 

                         U�<�L� 4  [ b<�h� � 0 

�<�L�
b<�L�

� � 
[
U

         : �3� 

According to  (2) and  (3)  

 
��J� � ��3�
 b�J� � b�3�

�
�<�h�
b<�L�

  , c $  �a , b� 

        

EXERCISE 

(1) Show that the value of � is strictly increasing for all 

 � $  ��∞, �3� and for all � $ �2, ∞� but strictly 

decreasing for all � $  ��3, �2�. 

                    ���� �  
1
3

�B 4
1
2

�� � 6� 4 3 
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(2)   Show that 

� �  i?X� �  �
1
6

�B 

Verify Rolle’s theorem for the following  

�3�    ����  �  
LYi�

@9     ?X   ��
W
2

,
W
2

� 

�4�     ����  �  ^Yb
�� 4 4

5�
  ?X �1 , 4 � 

�5�     ����  �  i?X� 4 LYi� ?X �0, W/2� 
�6�    ����  �  @9k

 ?X ��1 , 1� 
Show that Rolle’s theorem is not valid for the 

following 

�7�    ����  �  �� �  3��/B ?X � 0 , 23� 
�8�    ����  �  �m/n ?X � �1, 1� 
�9�    ����  �  ^YbIi@L� 4  `3X�K ?X �0 , W� 
�10�  ����  �  i?X� ?X �0 , W/2� 

Show that following equations has at least one 

root in the given interval. 

�11�  2LYi2� 4  i?X � �  0 ;   � W/2, W/2� 
�12�   9�o 4 10�m � 3�� 4 8� � 6 � 0; �0,1� 

�13�    If ���� �  �5 � ��� ^Yb � then show that the     

     equation ^Yb � � �5 –  ��/2� is satisfied by at        

    least one value of � lying between 1 and 5. 

�14�    Find L in the law of mean if 

      ���� � `3Xp�� , 3 � 1 3XP J � √3  and show       

      that it lies in the required interval. 

�15�   Find  L in the mean value theorem for the  

     function @9 in the interval (2,3). 

�16�   Whether the mean value theorem is applicable    

      or not for the function 

            ����  �  ��� 4 1�� in the interval ��1,1�. 
�17�   Find the value of L in the main value if  

                   ���� � �m � 5�  ; 3 � 0 , J � �
�
 

�18�   If ����  � �B 4 1 and b���  � �� in the interval     

     I0,1K determine the constant c in Cauchy’s mean      

     value theorem. 

�19�   If ����  �  i?X� and g��� = cosx in the interval  

     I�W/4, W/4K determine the constant c in       

     Cauchy’s mean value theorem.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


