Book 2

CALCULUS

WITH APPLICATIONS

M. MAQSOODALI

CONTINUITY, DERIVATIVE AND DIFFERNTIATION

Theorem A-4:
(i) Every finitely derivable function is continuous.
(ii) Taking a suitable example prove that converse is not necessary true.
Proof:
Suppose that f is a finitely derivable function at $x=a$, so that

$$
f^{\prime}(a)=\operatorname{Lim}_{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\text { finite real number }
$$

Since $f(x)-f(a)=\frac{f(x)-f(a)}{x-a}(x-a)$
$\operatorname{Lim}_{x \rightarrow a}[f(x)-f(a)]=\operatorname{Lim}_{x \rightarrow a}\left[\frac{x-a}{x-a}\right](x-f(a)]$

$$
\begin{aligned}
& =\operatorname{Lim}_{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \operatorname{Lim}_{x \rightarrow a}(x-a) \\
& =f^{\prime}(a) \cdot 0=0
\end{aligned}
$$

$$
\Rightarrow \quad \operatorname{Lim}_{x \rightarrow a} f(x)-f(a)=0
$$

$$
\Rightarrow \quad \operatorname{Lim}_{x \rightarrow a}^{x \rightarrow a} f(x)=f(a)
$$

so that f is continuous at $x=a$.
(ii) Let f be a modulus function.

$$
f(x)=|x|
$$

it is defined as

$$
f(x)=|x|=\begin{array}{lll}
-x & \text { for } & x<0 \\
0 & \text { for } & x=0 \\
x & \text { for } & x>0
\end{array}
$$

We know that f is continuous at $x=0$
Now we prove that f is not derivable at $x=0$. We have to prove that

$$
\operatorname{Lim}_{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}
$$

does not exist.
Left hand limit at 0 :

$$
\operatorname{Lim}_{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\operatorname{Lim}_{x \rightarrow 0^{-}} \frac{|x|-0}{x-0}
$$

Figure 7.9

$$
=\operatorname{Lim}_{x \rightarrow 0^{-}} \frac{|x|}{x}=\operatorname{Lim}_{x \rightarrow 0^{-}} \frac{-x}{x}=-1
$$

$$
\begin{aligned}
& \text { Right hand limit at } 0: \\
& \qquad \begin{array}{c}
\operatorname{Lim}_{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\operatorname{Lim}_{x \rightarrow 0^{+}} \frac{|x|-0}{x-0} \\
=\operatorname{Lim}_{x \rightarrow 0^{+}} \frac{|x|}{x}=\operatorname{Lim}_{x \rightarrow 0^{+}} \frac{x}{x}=1 \\
\Rightarrow \quad \operatorname{Lim}_{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0} \neq \operatorname{Lim}_{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0} \\
\text { so that } \operatorname{Lim}_{x \rightarrow 0} \frac{f(x)-f(0)}{x-0} \text { does not exist. }
\end{array} \text { }
\end{aligned}
$$

Hence f is not derivable at $x=0$
Example 7.8:
Discuss derivability of the function $f(x)=\sin x$ at $x=0$.

Solutiion:

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow 0} \frac{f(x)-f(0)}{x-0} & =\operatorname{Lim}_{x \rightarrow 0} \frac{\sin x-\sin 0}{x-0} \\
& =\operatorname{Lim}_{x \rightarrow 0} \frac{\sin x-0}{x} \\
& =\operatorname{Lim}_{x \rightarrow 0} \frac{\sin x}{x}=1
\end{aligned}
$$

Hence f is derivable at $x=0$
DIFFERENTIABLE FUNCTIONS:
A function f is said to be differentiable at $x=x_{0}$, if there exists a relation of the form.

$$
f\left(x_{0}+h\right)-f\left(x_{0}\right)=A \cdot h+\varepsilon h
$$

$\varepsilon \rightarrow 0$ as $h \rightarrow 0$
and A depends on x_{0}.

A function f is said to be differentiable at $x=x_{0}$, if
there exists a relation of the form.

$$
f(x+\Delta x)-f(x)=A \cdot \Delta x+\varepsilon \cdot \Delta x
$$

or $\quad \Delta y=A . \Delta x+\varepsilon . \Delta x$
$\varepsilon \rightarrow 0$ as $\Delta x \rightarrow 0$
and A is a function of x.
DIFFERENTIAR:

$$
\begin{gathered}
y=f(x) \text { is a function and } \\
\qquad d y=\frac{d y}{d x} \Delta x
\end{gathered}
$$

$d y$ is called differential of y.

COEFFICIENT OF DIFFERENTIAL:

The differential of $y=f(x)$ is defined as

$$
d y=\frac{d y}{d x} \Delta x
$$

$\frac{d y}{d x}$ is called coefficient of differential.
Differentiation and Derivative:
A function $f(x)$ is said to be differentiable at $x=x_{0}$ if there exists a relation of the form

$$
f\left(x_{0}+h\right)-f\left(x_{0}\right)=A h+\varepsilon h
$$

$\varepsilon \rightarrow 0$ as $h \rightarrow 0$
The relation can be written as

$$
\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=A+\varepsilon
$$

Taking $h \rightarrow 0$ 'so $\quad \varepsilon \rightarrow 0$

$$
\Rightarrow \quad f^{\prime}\left(x_{0}\right)=\operatorname{Lim}_{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=A
$$

The result is derivative. So differentiation is the process of finding the derivative of a function of one variable. We can say that derivability and differentiability are same for a function of one variable.

EXERCISE

Show that the following functions are continuous and

derivable at the indicated point.
(1) $f(x)=\cos x \quad$ at $x=0$
(2) $f(x)=x^{2}+5 x+2 \quad$ at $\quad x=2$
(3) $f(x)=\sqrt{x}-1 \quad$ at $\quad x=1$
(4) Show that $f(x)=\sin x$ is continuous and derivable for all $x \in \mathbb{R}$.

