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Chapter 7 

DERIVATIVES 

 

RATE OF CHANGE IN A STRAIGHT LINE: 
 The graph of a linear function ���� �  �� � 	 

is a straight line, as shown in the  

                                   figure 7.1 

            To find the rate of change in 
 with respect to �, 

select two points ����, 
�� and ����, 
��    � � rate of change of 
 w.r.t. � �  ��� �!" �  ∆
∆� 

               �  ����� $  ������� $  ��  

     Select other two points lie on the straight line to find 

rate of change of y w.r.t. �, the rate of change will be 

same. So that rate of change of a straight line is constant. 

This rate of change is called slope of the line. 

RATE OF CHANGE IN A CURVE 
      Suppose that %��� is a non-linear function. Graph of 

this function is shown in the figure 7.2. 

      P and Q are two points on the curve. A line segment 

joining P and Q is called secant and the line which passes 

through these two points is called secant line. If �� is the 

slope of secant PQ,  than                                              Slope of )* �   ��  �  �����  $   �������  $  ��  

Figure 7.3 

      Now select other three points R, S and T on the curve. 

According to the figure 7.3 slope of PS,,,is less than the 

slope of PQ,,,, and slope of ).,,,, is zero because ).,,,,  is 

parallel to x-axis and the slope of PT is negative. 

     Above discussion tells that the slopes of two different 

secants drawn from P are not same. So what should be 

the procedure to find the rate of change at a point P, 

because different secants drawn from P such that PQ, PR, 

PS and PT have different slopes. 
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      So what should do to find the rate of change at P? It is 

possible only when we select a point to draw a secant 

which is nearer to P. Suppose that (�/, ���/�� are the 

coordinate of P and (�/ �  0, ���/ �  0�� are the 

coordinates of another point on the curve. A secant line is 

drawn passes through these two points as shown in the 

figure 7.4. If 0 1 0, the slope of secant line becomes 

slope of tangent line. A tangent line is a straight line 

which touches the curve at a point, figure 7.5. So that the 

rate of change at P is the slope of the tangent at P, which  

is given below.                                                                                        Lim61/ ���/ �  0�  $  ���/���/  �  0�  $   �/  

                                                                                      Lim61/ ���/ �  0�  $  ���/�0  

      The value of this instantaneous rate of change of 
 

with respect to x defined as �’ ���, {read �’ as “f prime”}, 

so                      � ’���  �   8��61/ ���/ �  0�  $  ���/�0   �’ is called the derivative of �. 
AVERAGE AND INSTANTANEOUS RATE OF CHANGE 

         Slope of the secant joining the points (�/, ���/�� and 

(��, ������ is the average rate of change of ���� with 

respect to x over the interval��/, ���.                   �9:; �  ��� �!" � �����  $  ���/��� $  �/           Average rate of change of � w.r.t. �  �  �����  $  ���/��� $  �/  . 
Slope of the tangent at point (�/, ���/�� is instantaneous 

rate of change of ���� with respect to � at �/. �>?@ � LimAB 1 AC
�����  $  ���/��� $  �/      Instantaneous rate of change at �/    �  8��AB 1 AC

�����  $  ���/��� $  �/  

 

                                           Figure 7.6 
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DERIVATIVES 
       The instantaneous rate of change of � at � or slope of 

the tangent of a curve ���� at � is defined as                                                        Lim∆A 1 / ��� �  ∆��  $  ����∆�   
        If this limit exist, the value of the limit is called 

derivative of ���� with respect to x and written as  �G��� � Lim∆A 1 / ��� �  ∆��  $  ����∆�  

     The function �’ is called derivative of function f, read 

as “� prime” and �’ ���, “� prime �”. 

DERIVABLE FUNCTIONS 
      A function is said to be derivable at � �  �/ H  IJ , if                                                  LimA 1 AC  ����  $  ���/�� $  �/   
 exist as a finite definite quantity. 

       As the signs �, $, K and L are used for addition, 

subtraction, multiplication and division respectively. 

Similarly the notation 
MMA or IA (simply D) are used for 

derivative with respect to �. 

Example 7.1:  

Find the derivative by first principle of the following 

function 

                  ����  �  �@ , " is a real number. 

Solution:               �G��� � Lim∆A 1 / ��� �  ∆��  $  ����∆�  

                         � Lim∆A 1 /   �� �  ∆��@  $  �@∆�  ,   Nigure Nigure Nigure Nigure 7777....7777 

                            

                                � Lim∆A 1 /  �@ �1 � ∆�� �@  $  �@∆�  

Using binomial theorem, 

� Lim∆A 1 /   
�@  Q 1 �  " .  ∆�� � "�" –  1�2!   .  ∆����� "�" –  1��" $   2�3!   .  ∆�V�V  �  WX $  �@

∆�  
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� Lim    ∆A 1 /  
�@ �  " .  ∆� .  �@ – � �  "�" –  1�2!  ∆� .  �@ – �

� "�" $  1��" $  2�3!  ∆�V .  �@ Y V  �   .  .  .  $�@∆�     
� Lim∆A 1 /

∆�  Z"�@ Y  �  �  "�" $ 1�2!   ∆�  .  �@ Y  �
�  "�" $   1��" $   2�3!   ∆��  .  �@ Y  V �  .  .  . [∆�  

 

 � Lim∆A 1 /"�@ Y  � � @�@ Y  ���! ∆�.  �@ Y  � 

    � "�" $   1��" $   2�3!  ∆�� .  �@ Y  V � .  .  .    � "�@ Y  � �  0 �  0 �.  .  .    
 � "�@ Y  �  

Example 7.2:    

Find the derivative by first principle of the following 

functions %��� �  ��"�.  
Solution:    %G��� � Lim∆A 1 / %�� �   ∆��  $   %���∆�  

            � Lim∆A 1 / ��"�� �   ∆��  $   ��"���∆�  ,     Nigure Nigure Nigure Nigure 7777....8888   
                                                

           � Lim∆A 1 /
2 cos  2� �  ∆�2  sin�∆�2 �∆�  

   

Multiplying and dividing the denominator �∆�� by 2. 

                        � Lim ∆A 1 /
2 cos  2� �   ∆�2  sin�∆�2 �2  .  ∆�2  

                        � Lim∆A 1 /cos �2� �  ∆�2 �. Lim∆A 1 /  sin �∆�2 ��∆�2 �  

                          � ]^� _2�2 ` �1�                           � ]^�� 
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(1)   Sum Rule: 

If u and v are derivable functions of x, then                   aa� �! � b� � a!a� � aba�                       �! � b�G � !G � bG 
Proof: 

            By the definition of derivative aa� c!��� �  b���d
� Lim61/ c!�� �   0� � b�� �   0�d $   c!��� �   b���d0                     �  Lim61/ !�� �   0� $   !���  �   b�� �   0� $   b���0  

                                                             � Lim                               61/  !�� �   0� $   !���0� Lim61/ b�� �   0� $   b���0  
                                       � aa� !��� � aa� b��� 

                    

 (2)   Subtraction Rule: 

        If u and v are derivable function of x, then                              aa� �u $ v� � a!a� $ aba� ^�               �! $ b�G � !G $ bG 
Proof: 

          By the definition of derivative aa� c!���–  b���d 

� Lim61/  c!�� �   0�  $  b�� �   0�d $   c!��� $   b���d0  

� Lim       61/ c!�� �   0�  $  !���d $   cb�� �   0� $   b���d0  

� Lim61/  c!�� �   0�  $  !���d0  
$  Lim61/     cb�� �   0� $   b���d0  

� aa� !��� $ aa� b��� 
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(4)   Quotient Rule: 

If u and v are derivable functions of �, and b e  0, 

then 

           aa� c!bd  � b  .  a!a�  $   !  .  aba�  b�   
                      or                      f!bgG �  b  .  !G $   !  .  bhb�  

Proof: 

      According to the definition of derivative 

 aa� i!���b���j � Lim61/
!�� �   0�b�� �   0�  $   !���b���0  

                                                                              � Lim61/  b��� .  !�� �   0�  $   !��� .  b�� �   0�0  .  b�� �   0� .  b���  

    Adding and subtracting b��� . !��� in numerator. 

  

� Lim61/  b��� .  !�� �   0�  $  b��� .  !��� $  !���.  b�� �   0� �   b��� .  !���0  .  b�� �   0� .  b���  

 

  � Lim61/  [ �k�A l  6� .  k�A�] [ b��� Lim61/  {
m�A l  6�Y  m�A�  6 }  

                                          – !��� Lim61/  {
k�A l  6�Y  k�A�6 [d                      � 1b��� .  b��� cb��� aa� !��� –  !��� aa�  b���d  

    
                � b��� aa�   !��� $   !��� aa�   b��� b� ���  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


