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Chapter 7

DERIVATIVES

RATE OF CHANGE IN A STRAIGHT LINE:
The graph of a linear function

f(x)=ax+b ¥s= 10%) !
is a straight line, as shown in the :
figure 7.1 yi=1(x)) I
To find the rate of change in y with respect to x, — . X
select two points A(xy,y1) and B(x,, V) 1 ’
= rate of change of y wrtx = s = = /
m = rate of change of y w.r.t. x = = X
= fx) = f () Figure 7.1
Xy — Xq
Select other two points lie on the straight line to find y i \

rate of change of y w.r.t. x, the rate of change will be
same. So that rate of change of a straight line is constant.
This rate of change is called slope of the line.
RATE OF CHANGE IN A CURVE
Suppose that g(x) is a non-linear function. Graph o
this function is shown in the figure 7.2.
P and Q are two points on the curve. A line segm

slope of secant PQ, than

Slope of PQ = my

Figure 7.

Now select other three points
According to the figure 7.
slope of PQ and slope of because PR is
parallel to x-axis and the slope o gative.

Above discussion tells that the slopes of two different
secants drawn from P are not same. So what should be
the procedure to find the rate of change at a point P, Figure 7.3
because different secants drawn from P such that PQ, PR,

PS and PT have different slopes.

d T on the curve.
is less than the
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So what should do to find the rate of change at P? It is
possible only when we select a point to draw a secant
which is nearer to P. Suppose that (x,, f(x,)) are the
coordinate of P and (xq + h,f(xg+ h)) are the
coordinates of another point on the curve. A secant line is
drawn passes through these two points as shown in the
figure 7.4. If h —» 0, the slope of secant line becomes
slope of tangent line. A tangent line is a straight line
which touches the curve at a point, figure 7.5. So that the
rate of change at P is the slope of the tangent at P, which
is given below.

1mf(?fo + h) — f(xo)
-0 (xo + h) — xg

_ flxo+ h) = f(xo)
Lim
h—-0 h
The value of this instantaneous rate of change of y
with respect to x defined as f’ (x), {read f’ as “f prime”},
so

, _ flxo+ h) — f(xo)
Fre = ppe
f”is called the derivative of f.
AVERAGE AND INSTANTANEOUS RATE OF CHANGE
Slope of the secant joining the points (x,, f (X,
(%1, f(x1)) is the average rate of change of f(x)
respect to x over the interval(xg, x1).
rise  f(x1) — f(xo)
run X, — X
Average rate of change of f w.r.t. x
f) — f(xo)
B X1 — Xo
Slope of the tangent at point (x,
rate of change of f(x) wit

Mgec =

is instantaneous

Mign = Lim
X1 ™ Xo

Instantaneous rate of change at
o f(e) = fxo)
= Lim

X1 = Xo X1 — Xg

Figure 7.6
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Figure 7.4

/

f(x,)

f(%o)

and Figure 7.5

Figure 7.6
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The instantaneous rate of change of f at x or slope of
the tangent of a curve f(x) at x is defined as
flx+ Ax) — f(x)
m
Ax -0 Ax
If this limit exist, the value of the limit is called
derivative of f(x) with respect to x and written as
v S AY) = (0
f1x) = AIJEILno Ax
The function f’is called derivative of function f, read
as “f prime” and f’ (x), “f prime x”.
DERIVABLE FUNCTIONS
A function is said to be derivable at x = x, € Dy, if

) — fx)
Lim
X = Xo X — xO
exist as a finite definite quantity.
As the signs 4+, —, X and = are used for addition,
subtraction, multiplication and division respectively.

d
Similarly the notation = O D, (simply D) are used for

derivative with respect to x.
Example 7.1:
Find the derivative by first principle of the following
function

f(x) = x™,nisareal number.

Solution:

16 = i,

flx+ Ax) = f(

Using binomial theorem,

2
L4n, M n@2Y) o

n X 2! ©ox? _ ,n
x nn- Dn — 2) Ax3 x
+ o L=t
. ! X
= Lim
Ax -0 Ax
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X X+AX

Figure 7.7
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X"+ n. Ax. x4+ %Ax. xn 2

+ n(n — 13)'(11 —2) Ax3 . x"=3 + ... —x"
= Lim :
Ax -0 Ax
Ax {nx"~ 1 + n(n2—|—1) Ax . x™ 2
+ n(n — 13),(11_ 2) Ax? . x"" 34 ..}
= Lim -
Ax >0 Ax
= Limnx"~ 1+ 20Dy yn-2
Ax =0 2! '

+ n(n = 13)'(71 — 2) Ax? . x

=nx"" 1+ 0+ 0 +. ..

=nx""1

Example 7.2:

Find the derivative by first principle of the following

functions g(x) = sinx.

Solution:
glx + Ax) — g(x)

9'(0) g Lim Ax
B sin(x + Ax) — sin(x) f
= Lim o , figure
N
2 cos M sin(AZ—x) (XHAX) | === == 2=
= Lim :
Ax -0 Ax
Al S
Multiplying and dividing the denominator (Ax :
Ax ;
2 cos - : —> X
= Lim 0 x x+tAx T
Ax >0 ‘ .
Figure 7.8
sin (Az—x)
= Lim cos (. ). Lim ———=—
Ax -0 Ax -0 Ax
=)
_ (2x> L
= cos 5 (D
= coSx
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(1) Sum Rule:

If uand v are derivable functions of x, then
d (et ) = du N dv
dx wrv = dx dx
u+v) =u+v
Proof:

By the definition of derivative

d
P [u(x) + v(x)]

Julx + h) +vlx + h)]— [ulx)+ vx)]
= Lim
h—0 h

S ulx+ h)— ux) + vix + h) — v(x)
= Lim
h—0 h

u(x + h) — u(x)
m

h—0

h
v(x + h) — v(x)

+ Lim

h—0 h
d d
= au(x) + av(x) ‘

(2) Subtraction Rule:

h — vl + M- [u@) - v)]

= Lim

K ] - [ + B~ ve))
= Li

h—0 h

. ) — u(x)]
= Lim

h—0 h

[v(x + h)— v(x)]
B h—0 h

d d
= au(x) - av(x)
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(4) Quotient Rule:
If uand v are derivable functions of x, and v # 0,

then

du dv
d u Vg~ Y- gy
dx [v] B v2
w' v.u - u.v
or (;) = 2
Proof:

According to the definition of derivative
u(x + h) u(x)
d [u N
_[ (0] Lim vix + h)  v(x)
dx

v(x) "~ h-0 h
v ulx + h) — ulx). v(x +
= Lim
h—0 h.v(x + h). v(x)
Adding and subtracting v(x) .u(x) in numera

h—0 h.vx + h). v(x

. 1 .
_hklom [v(x + h). v(x)] [v(x) 1_{{)1
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