Book 2

CALCULUS

WITH APPLICATIONS

M. MAQSOODALI

Chapter 7

DERIVATIVES

RATE OF CHANGE IN A STRAIGHT LINE:

The graph of a linear function

$$
f(x)=a x+b
$$

is a straight line, as shown in the

figure 7.1

To find the rate of change in y with respect to x, select two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$

$$
\begin{aligned}
m & =\text { rate of change of } y \text { w.r.t. } x=\frac{\text { rise }}{\text { run }}=\frac{\Delta y}{\Delta x} \\
& =\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
\end{aligned}
$$

Select other two points lie on the straight line to find rate of change of y w.r.t. x, the rate of change will be same. So that rate of change of a straight line is constant. This rate of change is called slope of the line.

RATE OF CHANGE IN A CURVE

Suppose that $g(x)$ is a non-linear function. Graph of this function is shown in the figure 7.2.
P and Q are two points on the curve. A line segment joining P and Q is called secant and the line which passes through these two points is called secant line. If m_{1} is the slope of secant $P Q$, than

$$
\begin{gathered}
\text { Slope of } P Q=m_{1}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \\
\text { Figure } 7.3
\end{gathered}
$$

Now select other three points R, S and T on the curve. According to the figure 7.3 slope of $\overline{\mathrm{PS}}$ is less than the slope of $\overline{\mathrm{PQ}}$ and slope of $\overline{P R}$ is zero because $\overline{P R}$ is parallel to x-axis and the slope of PT is negative.

Above discussion tells that the slopes of two different secants drawn from P are not same. So what should be the procedure to find the rate of change at a point P, because different secants drawn from P such that $P Q, P R$, PS and PT have different slopes.

So what should do to find the rate of change at P ? It is possible only when we select a point to draw a secant which is nearer to P . Suppose that $\left(x_{0}, f\left(x_{0}\right)\right)$ are the coordinate of P and $\left(x_{0}+h, f\left(x_{0}+h\right)\right)$ are the coordinates of another point on the curve. A secant line is drawn passes through these two points as shown in the figure 7.4. If $h \rightarrow 0$, the slope of secant line becomes slope of tangent line. A tangent line is a straight line which touches the curve at a point, figure 7.5. So that the rate of change at P is the slope of the tangent at P, which is given below.

$$
\begin{aligned}
& \operatorname{Lim}_{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{\left(x_{0}+h\right)-x_{0}} \\
& \operatorname{Lim}_{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
\end{aligned}
$$

The value of this instantaneous rate of change of y with respect to x defined as $f^{\prime}(x)$, \{read f^{\prime} as "f prime" \}, so

$$
f^{\prime}(x)=\operatorname{Lim}_{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

f^{\prime} is called the derivative of f. AVERAGE AND INSTANTANEOUS RATE OF CHANGE

Slope of the secant joining the points $\left(x_{0}, f\left(x_{0}\right)\right)$ and ($\left.x_{1}, f\left(x_{1}\right)\right)$ is the average rate of change of $f(x)$ with respect to x over the interval $\left(x_{0}, x_{1}\right)$.

$$
m_{s e c}=\frac{\text { rise }}{\text { run }}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
$$

Average rate of change of f w.r.t. x

$$
=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
$$

Slope of the tangent at point $\left(x_{0}, f\left(x_{0}\right)\right)$ is instantaneous rate of change of $f(x)$ with respect to x at x_{0}.

$$
m_{t a n}=\operatorname{Lim}_{x_{1} \rightarrow x_{0}} \frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
$$

Instantaneous rate of change at x_{0}

$$
=\operatorname{Lim}_{x_{1} \rightarrow x_{0}} \frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
$$

Figure 7.4

Figure 7.5

Figure 7.6
Figure 7.6

DERIVATIVES

The instantaneous rate of change of f at x or slope of the tangent of a curve $f(x)$ at x is defined as $\operatorname{Lim}_{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$
If this limit exist, the value of the limit is called derivative of $f(x)$ with respect to x and written as

$$
f^{\prime}(x)=\operatorname{Lim}_{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

The function f^{\prime} is called derivative of function f , read as " f prime" and f ' (x), " f prime x ".
DERIVABLE FUNCTIONS

A function is said to be derivable at $x=x_{0} \in D_{f}$, if

$$
\operatorname{Lim}_{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

exist as a finite definite quantity.
As the signs,,$+- \times$ and \div are used for addition, subtraction, multiplication and division respectively. Similarly the notation $\frac{d}{d x}$ or D_{x} (simply D) are used for derivative with respect to x.
Example 7.1:
Find the derivative by first principle of the following function

$$
f(x)=x^{n}, n \text { is a real number. }
$$

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\operatorname{Lim}_{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\
& =\operatorname{Lim}_{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{n}-x^{n}}{\Delta x}, \text { figure } 7.7
\end{aligned}
$$

Using binomial theorem,

$$
=\operatorname{Lim}_{\Delta x \rightarrow 0} \frac{x^{n}\left(1+\frac{\Delta x}{x}\right)^{n}-x^{n}}{\Delta x}
$$

$$
=\operatorname{Lim}_{\Delta x \rightarrow 0} \frac{x^{n}\left\{\begin{array}{c}
1+n \cdot \frac{\Delta x}{x}+\frac{n(n-1)}{2!} \cdot \frac{\Delta x^{2}}{x^{2}} \\
+\frac{n(n-1)(n-2)}{3!} \cdot \frac{\Delta x^{3}}{x^{3}}+\cdots
\end{array}\right\}-x^{n}}{\Delta x}
$$

$$
\begin{aligned}
& x^{n}+n \cdot \Delta x \cdot x^{n-1}+\frac{n(n-1)}{2!} \Delta x \cdot x^{n-2} \\
&=\operatorname{Lim}_{\Delta x \rightarrow 0}+\frac{n(n-1)(n-2)}{3!} \Delta x^{3} \cdot x^{n-3}+\ldots-x^{n} \\
& \Delta x
\end{aligned}
$$

$$
\begin{gathered}
\Delta x\left\{n x^{n-1}+\frac{n(n-1)}{2!} \Delta x \cdot x^{n-2}\right. \\
=\operatorname{Lim}_{\Delta x \rightarrow 0} \frac{\left.+\frac{n(n-1)(n-2)}{3!} \Delta x^{2} \cdot x^{n-3}+\ldots\right\}}{\Delta x}
\end{gathered}
$$

$$
=\operatorname{Lim}_{\Delta x \rightarrow 0} n x^{n-1}+\frac{n(n-1)}{2!} \Delta x \cdot x^{n-2}
$$

$$
+\frac{n(n-1)(n-2)}{3!} \Delta x^{2} \cdot x^{n-3}+\ldots
$$

$$
=n x^{n-1}+0+0+\ldots
$$

$$
=n x^{n-1}
$$

Example 7.2:
Find the derivative by first principle of the following functions $g(x)=\sin x$.

Solution:

$$
\begin{aligned}
g^{\prime}(x) & =\operatorname{Lim}_{\Delta x \rightarrow 0} \frac{g(x+\Delta x)-g(x)}{\Delta x} \\
& =\operatorname{Lim}_{\Delta x \rightarrow 0} \frac{\sin (x+\Delta x)-\sin (x)}{\Delta x}, \text { figure } 7.8 \\
& =\operatorname{Lim}_{\Delta x \rightarrow 0} \frac{2 \cos \frac{2 x+\Delta x}{2} \sin \left(\frac{\Delta x}{2}\right)}{\Delta x}
\end{aligned}
$$

Multiplying and dividing the denominator (Δx) by 2.

$$
\begin{aligned}
& =\operatorname{Lim}_{\Delta x \rightarrow 0} \frac{2 \cos \frac{2 x+\Delta x}{2} \sin \left(\frac{\Delta x}{2}\right)}{2 \cdot \frac{\Delta x}{2}} \\
& \quad=\operatorname{Lim}_{\Delta x \rightarrow 0} \cos \left(\frac{2 x+\Delta x}{2}\right) \cdot \operatorname{Lim}_{\Delta x \rightarrow 0} \frac{\sin \left(\frac{\Delta x}{2}\right)}{\left(\frac{\Delta x}{2}\right)} \\
& =\cos \left(\frac{2 x}{2}\right)(1) \\
& =\cos x
\end{aligned}
$$

A UTMETOR

ME MLAQSOOD ALI ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON MATHEMATICS BY
M. MAQSOOD ALI FROM WEBSITE www.mathbunch .com

(1) Sum Rule:

If u and v are derivable functions of x, then

$$
\begin{aligned}
\frac{d}{d x}(u+v) & =\frac{d u}{d x}+\frac{d v}{d x} \\
(u+v)^{\prime} & =u^{\prime}+v^{\prime}
\end{aligned}
$$

Proof:

By the definition of derivative
$\frac{d}{d x}[u(x)+v(x)]$
$=\operatorname{Lim}_{h \rightarrow 0} \frac{[u(x+h)+v(x+h)]-[u(x)+v(x)]}{h}$
$=\operatorname{Lim}_{h \rightarrow 0} \frac{u(x+h)-u(x)+v(x+h)-v(x)}{h}$

$$
\begin{aligned}
=\operatorname{Lim}_{h \rightarrow 0} & \frac{u(x+h)-u(x)}{h} \\
& +\operatorname{Lim}_{h \rightarrow 0} \frac{v(x+h)-v(x)}{h}
\end{aligned}
$$

$$
=\frac{d}{d x} u(x)+\frac{d}{d x} v(x)
$$

(2) Subtraction Rule:

If u and v are derivable function of x, then
or $\quad \begin{aligned} \frac{d}{d x}(u-v) & =\frac{d u}{d x}-\frac{d v}{d x} \\ (u-v)^{\prime} & =u^{\prime}-v^{\prime}\end{aligned}$
Proof:
By the definition of derivative
$\frac{d}{d x}[u(x)-v(x)]$
$=\operatorname{Lim}_{h \rightarrow 0} \frac{[u(x+h)-v(x+h)]-[u(x)-v(x)]}{h}$
$=\operatorname{Lim}_{h \rightarrow 0} \frac{[u(x+h)-u(x)]-[v(x+h)-v(x)]}{h}$
$=\operatorname{Lim}_{h \rightarrow 0} \frac{[u(x+h)-u(x)]^{h}}{h}$
$-\operatorname{Lim}_{h \rightarrow 0} \frac{[v(x+h)-v(x)]}{h}$
$=\frac{d}{d x} u(x)-\frac{d}{d x} v(x)$

A Urpuror

Mr Mr
ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON MATHEMATICS

BY
M. MAQSOOD ALI FROM WEBSITE
(4) Quotient Rule:

If u and v are derivable functions of x, and $v \neq 0$,
then

$$
\frac{d}{d x}\left[\frac{u}{v}\right]=\frac{v \cdot \frac{d u}{d x}-u \cdot \frac{d v}{d x}}{v^{2}}
$$

or

$$
\left(\frac{u}{v}\right)^{\prime}=\frac{v \cdot u^{\prime}-u \cdot v^{\prime}}{v^{2}}
$$

Proof:

According to the definition of derivative

$$
\begin{aligned}
\frac{d}{d x}\left[\frac{u(x)}{v(x)}\right] & =\operatorname{Lim}_{h \rightarrow 0} \frac{\frac{u(x+h)}{v(x+h)}-\frac{u(x)}{v(x)}}{h} \\
& =\operatorname{Lim}_{h \rightarrow 0} \frac{v(x) \cdot u(x+h)-u(x) \cdot v(x+h)}{h \cdot v(x+h) \cdot v(x)}
\end{aligned}
$$

Adding and subtracting $v(x) \cdot u(x)$ in numerator.

$$
\begin{array}{r}
v(x) \cdot u(x+h)-v(x) \cdot u(x) \\
=\operatorname{Lim}_{h \rightarrow 0} \frac{-u(x) \cdot v(x+h)+v(x) \cdot u(x)}{h \cdot v(x+h) \cdot v(x)}
\end{array}
$$

$$
=\operatorname{Lim}_{h \rightarrow 0}\left[\frac{1}{v(x+h) \cdot v(x)}\right]\left[v(x) \operatorname{Lim}_{h \rightarrow 0}\left\{\frac{u(x+h)-u(x)}{h}\right\}\right.
$$

$$
=\frac{1}{v(x) \cdot v(x)}\left[v(x) \frac{d}{d x} u(x)-u(x) \frac{d}{d x} v(x)\right]
$$

$$
=\frac{v(x) \frac{d}{d x} u(x)-u(x) \frac{d}{d x} v(x)}{v^{2}(x)}
$$

