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Chapter 6

CONTINUITY

... “if the function is continuous.” . ..
It is not only a sentence but a necessary condition for almost all the theorems and formulas of

domain of the function.
Definition 1:
A function f(x) is continuous at x = a, if for a given p

corresponding real number § > 0 such that

If() = fl@)l <e for al

Definition 2:

A function f(x) is continuousatx = a, ift : ons are satisfied.
(1) The value of f(x) must existsatx = a
(2) lim f(x) must exists
xX—a
(3) lim f(x) = f(a)

Example 6.1:

~ f R

Show that sin x is continuo ral
Solution:

We discuss the continu

|f () - f( al
S x —a
sin 5 |
Lsin === = (D
a X —a
| < 15—
Substi
X —a
If G- f@l = 2(D) |[——1 = Ix — 4

Let [x —a|l < § =>|fx)-fa)| < d=¢
lf(x)- f(a)|< € for |x —a] < &
So f is continuous for all values of x € R
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TYPES OF DISCONTINUOUS FUNCTIONS
Following are the three types of discontinuous functions.
The following functions are discontinuous at c.

GAP BREAK JUMP
A A
: 5 \ /
c N ‘I: g c -
Examples: Following functions f(x) are discontinuous at 5.
2_25 2x +X <D x+3 ,x<5
f(x) = = f(x) =
x-5 f(x) =412 5 X =5 4x-8 , x=5
3x+25,x>5
¥
y f(x) y i o T
o N /
T \ it
| : ! : B
| : —_—— ' L > X 5 X
Figure 6.1

Explanation: v——

If you draw a f(x) from a to b without lifting t nf per, as shown in the figure,
then f(x) is continuous on [a, b]. &

‘-
Fi 6.2
\‘ igure

o | S,

Confusion:
Can we discuss the continuity e wing functions?

Figure 6.3
By vertical line test the above curves are not the graphs of functions, so we can not discuss the

continuity.
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Example 6.2:
Discuss the continuity of the function 4
F(x) ={2x for 0 < x <6 40t
3x+1 for 6 < x < o
atx = 6. 301
Solution:
Value of the function at x = 6: ol
f(6) =3x6 +1=19
Left hand imit at 6:
Lim f(x) = Lim (2x) = 12 1071
X—6~ X—6~
Right hand limit at 6: 3 6 g —>X
Lim f(x) = Lim(3x+ 1) =19
x—6t x—6%

Figure 6.4
Limit at 6:

Lim f(x) # Lim f(x)
xX—6~ x—6%

Lirgl f(x) does not exist.

X—

So that the function f(x) is discontinuous at x = 6.
Figure 6.4 Q
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ONE SIDED CONTINUOUS FUNCTIONS:
A function f is continuous from the right at a number "a"
if

Lim £(x) = f(a)
A function f is continuous from the left at "a" if
Lim £(x) = f(a)
Examples 6.4:

The Greatest integer function f(x) = |x| is continuous
from the right at each integer "a" because

Lim f(x) = Lim|x] = a = f(a)

x—-at x—-at
but f(x) is discontinuous from the left at each integer
"a" because

Lim f() = Lim|x] = a # f(@

Theorem A-3:

If two functions f and g are continuous at "a" the
following functions are also continuous.

(i) f+g (i) f—g [(iii)) bf,wherebisacons

(iv) fg (v) g if g(a)# 0.

Proof:
Since f and g are continuous at "a”
Lim f(x) = f(a) and g(a)
xX—a x=a
Lim(f + g)(x) = xX)+.g
xX—a X
i Lim g(x)

mial function is continuous for all

Using the result (i) and (ii) of theorem A-3, we will prove
that a polynomial is continuous for all x € R.
Consider a polynomial P(x)

P(xX) =cpntc, _m-1+4C2+0x+ 6
where ¢,, ¢4, Cy, ***, Cn_1, Cp are constants.
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We discuss the continuity at x = a
Let f(x) = x™

Lim f(x) =Limx™ = a™ = f(a)

xX—a x—a
= f(x) = x™is continuous at x = a.
letg(x) =c,

Lim g(x) =Limc, =c, = g(a)

x—-a x—-a
. g(x) = ¢, is continuous at x = a.
f(x) = x™ is continuous function then by the theorem
A-3 (iii) c,xm is continuous.
Since P(x) is the sum of the function of the form ¢,,x™
and a constant function it follows from theorem A-3 (i)
that P(x) is continuous at a € R.

Example 6.6:
Show that a rational function is continuous wherever it i
defined, that is continuous on its domain.
Solution:
Consider a rational function f(x)
P(x)
f(x) 0

where P(x), Q(x) are polynomial

D={x€eR [Q(
According to above example
continuous for all x € D
continuous for all x €

are

), fis
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