Book 2

CALCULUS

WITH APPLICATIONS

M. MAQSOODALI

Chapter 5
LIMITS

INDETERMINATE FORMS:
The undefined values

$$
\frac{0}{0}, 0 . \infty, 0^{0}, \frac{\infty}{\infty}, \infty-\infty, \infty^{\infty}, 1^{\infty}
$$

of a function $f(x)$ at $x=a$ are called indeterminate forms.

LIMIT OF THE FUNCTION

Definition 1:
A real number " l " is the limit of a function f at " a ", if $f(x)$ gets closer and closer to " l " as x approaches " a ". It is written as

$$
\operatorname{Lim}_{x \rightarrow a} f(x)=l
$$

Explanation:

$$
\operatorname{Lim}_{x \rightarrow a} f(x)=\operatorname{Lim}_{x \rightarrow a-} f(x)=\operatorname{Lim}_{x \rightarrow a+} f(x)=l
$$

where a^{-}and a^{+}lie in the deleted neighborhood of " a " on a real number line in left and right side of " a "

Figure 5.1
respectively. Thus, $a^{+} \cong \mathrm{a} \cong a^{-}$.
Definition 2:
A real number " l " is the limit of a function f at " a ".
If for every real number $\varepsilon>0$ there exist a
coressponding real number $\delta>0$, such that

$$
|x-a|<\delta \Rightarrow|f(x)-l|<\varepsilon
$$

Value and Limit of the Functions:
Difference between value of the function and limit of the function can be understand by the following function

$$
f(x)=\frac{x^{2}-9}{x-3}
$$

Value of the function at 3:
Substitute $x=3$

$$
\begin{aligned}
f(3)= & \frac{3^{2}-9}{3-3} \\
& =\frac{0}{0} \quad \text { (undefined) }
\end{aligned}
$$

Explanation:
Simplify the function

$$
\begin{aligned}
f(x) & =\frac{x^{2}-9}{x-3} \\
& =\frac{(x+3)(x-3)}{(x-3)} \\
& \neq(x+3)(1) \text { for } x=3
\end{aligned}
$$

because for $x=3$

$$
\begin{aligned}
\frac{x-3}{x-3} & =\frac{3-3}{3-3} \\
& =\frac{0}{0} \neq 1
\end{aligned}
$$

Limit of the function at 3:

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow 3} f(x) & =\operatorname{Lim}_{x \rightarrow 3} \frac{x^{2}-9}{x-3} \\
& =\operatorname{Lim}_{x \rightarrow 3} \frac{(x+3)(x-3)}{x-3} \\
& =\operatorname{Lim}_{x \rightarrow 3}(x+3)(1) \\
& =6
\end{aligned}
$$

Explanation:

$$
x \rightarrow 3 \Rightarrow \frac{x-3}{x-3}=1 \neq \frac{0}{0}
$$

because $x \rightarrow 3$ means x is very nearly equal to 3 not exactly equal to 3 . So x is either less than $3(x<3)$ or greater than $3(x>3)$.
If $x=3.00 \ldots 01>3$, then

$$
\begin{aligned}
\frac{x-3}{x-3} & =\frac{3.00 \ldots 01-3}{3.00 \ldots 01-3} \\
& =\frac{0.00 \ldots 01}{0.00 \ldots 01} \\
& =1 \neq \frac{0}{0}
\end{aligned}
$$

A UTMETOR

MT. Mreqsiool frr ASSISTANT PROFESSOR OF MATHEMATICS

LEFT AND RIGHT HAND LIMITS

Left Hand Limit:
Left hand limit of a function f is " l " at "a" and written as

$$
\operatorname{Lim}_{x \rightarrow a^{-}} f(x)=l
$$

a^{-}means, it is not equal to negative $a(-a)$ but it is just on left side of " a " in the neighborhood of " a ". It can be defined as

$$
a^{-} \in(a-\varepsilon, a)
$$

$$
\text { or } \quad a-\varepsilon<a^{-}<a
$$

where $(a-\varepsilon, a+\varepsilon)$ is the neighbourhood of " a ".
Right Hand Limit:
Right hand limit of a function is " l " at " a " written as $\operatorname{Lim}_{x \rightarrow a^{+}} f(x)=l$
a^{+}means, it is not equal to positive $a(+a)$ but
it is just on right side of " a " in the neighborhood of a. It can be defined as

$$
a^{+} \in(a, a+\varepsilon)
$$

or $\quad a<a^{+}<a+\varepsilon$
On a number line

figure 5.4.

Limit of the Function:
Limit of the function at " a " ($\left.\operatorname{Lim}_{x \rightarrow a} f(x)\right)$ exist only when the left and right hand limits are equal.

$$
\operatorname{Lim}_{x \rightarrow a^{-}} f(x)=\operatorname{Lim}_{x \rightarrow a^{+}} f(x)
$$

So that, if

$$
\operatorname{Lim}_{x \rightarrow a^{-}} f(x)=l=\operatorname{Lim}_{x \rightarrow a^{+}} f(x)
$$

then

$$
\operatorname{Lim}_{x \rightarrow a} f(x)=l
$$

Example 5.2 : Discuss the limit of the function

$$
f(x)= \begin{cases}2 x+5 & \text { for } x<5 \\ 2 x & \text { for } x \geq 5\end{cases}
$$

(1) at 5
(2) at 6

Solution:
(1)

So the limit of $f(x)$ does not exist at 5 .
Figure 5.5

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 5^{-}} f(x)=\operatorname{Lim}_{x \rightarrow 5^{-}}(2 x+5)=15 \\
& \operatorname{Lim}_{x \rightarrow 5^{+}} f(x)=\operatorname{Lim}_{x \rightarrow 5^{+}} 2 x=10 \\
& \text { Left hand limit } \neq \text { Right hand limit }
\end{aligned}
$$

(2)

$$
\begin{gathered}
\qquad \operatorname{Lim}_{x \rightarrow 6^{-}} f(x)=\operatorname{Lim}_{x \rightarrow 6^{-}} 2 x=12 \\
\operatorname{Lim}_{x \rightarrow 6^{+}} f(x)=\operatorname{Lim}_{x \rightarrow 6^{+}} 2 x=12 \\
\text { Left hand limit }=\text { Right hand limit }=2 \\
\operatorname{Lim}_{x \rightarrow 6} f(x)=12
\end{gathered}
$$

Figure 5.5
Example 5.3:
Discuss the limit of Greatest integer function at 2.
Solution:

$$
f(x)=\lfloor x\rfloor
$$

Greatest integer function is defined as
$f(x)=\lfloor x\rfloor=a$ for $a \leq x<a+1, a \in Z$ and $x \in R$
so that

$$
\begin{array}{rlllll}
f(x)=\lfloor x\rfloor & =0 & \text { for } & 0 \leq x<1 & \text { or } & \\
& x \in[0,1) \\
& =1 & \text { for } & 1 \leq x<2 & \text { or } & \\
& x \in[1,2) \\
& =2 & \text { for } & 2 \leq x<3 & & \text { or } \\
& x \in[2,3) \\
& =3 & \text { for } & 3 \leq x<4 & & \text { or }
\end{array} \quad x \in[3,4)
$$

Left hand limit at 2:

$$
\operatorname{Lim}_{x \rightarrow 2^{-}} f(x)=\operatorname{Lim}_{x \rightarrow 2^{-}}\lfloor x\rfloor=1
$$

\{because $2^{-}>1$ and $2^{-}<2 \Rightarrow 2^{-} \in[1,2) \Rightarrow$ $\left.f\left(2^{-}\right)=1\right\}$
Right hand limit at 2:

$$
\operatorname{Lim}_{x \rightarrow 2^{+}} f(x)=\operatorname{Lim}_{x \rightarrow 2^{+}}\lfloor x\rfloor=2
$$

\{because $2^{+}>2$ but $2^{+}<3 \Rightarrow 2^{+} \in[2,3) \Rightarrow$
$\left.f\left(2^{+}\right)=2\right\}$
Limit at 2:

$$
\begin{gathered}
\operatorname{Lim}_{x \rightarrow 2^{-}} f(x) \neq \operatorname{Lim}_{x \rightarrow 2^{+}}[x] \\
\text { Figure 5.6 }
\end{gathered}
$$

Hence $\operatorname{Lim}_{x \rightarrow 2} f(x)$ does not exist.
Example 5.4:

Discuss the Limit of Greatest integer function at 2.5.
Solution: Left hand limit at 2.5:

$$
\operatorname{Lim}_{x \rightarrow 2.5^{-}} f(x)=\operatorname{Lim}_{x \rightarrow 2.5^{-}}|x|=2
$$

\{because $2.5^{-}<2.5$ but $2.5^{-}>2 \Rightarrow 2.5^{-} \in[2,3) \Rightarrow$
$\left.\left.f\left(2.5^{-}\right)=2\right]\right\}$
Right hand limit at 2.5:

$$
\lim _{x \rightarrow 2.5^{+}} f(x)=\operatorname{Lim}_{x \rightarrow 2.5^{+}}\lfloor x\rfloor=2
$$

\{since $2.5^{+}>2.5$ but $2.5^{+}<3 \Rightarrow 2.5^{+} \in[2,3)$

$$
\left.\Rightarrow f\left(2.5^{+}\right)=2\right\}
$$

Limit at 2.5:

$$
\operatorname{Lim}_{x \rightarrow 2.5^{-}} f(x)=\operatorname{Lim}_{x \rightarrow 2.5^{+}} f(x)=2
$$

Figure 5.6
Hence

$$
\operatorname{Lim}_{x \rightarrow 2.5} f(x)=2
$$

Example 5.5:
Find the limit of modulus function at zero, figure 5.7.

Solution:

Modulus function is defined as

$$
f(x)=|x|=\left\{\begin{array}{lll}
-x & \text { for } & x<0 \\
0 & \text { for } & x=0 \\
+x & \text { for } & x>0
\end{array}\right.
$$

Left hand limit at zero:

$$
\operatorname{Lim}_{x \rightarrow 0^{-}} f(x)=\operatorname{Lim}_{x \rightarrow 0^{-}}|x|=\operatorname{Lim}_{x \rightarrow 0^{-}}(-x)
$$

\{because $\left.0^{-} \stackrel{x \rightarrow 0}{<} 0 \Rightarrow|x| \stackrel{\substack{x \rightarrow 0^{-} \\=}}{ }-x\right\}$
Right hand limit at zero:

$$
\operatorname{Lim}_{x \rightarrow 0^{+}} f(x)=\operatorname{Lim}_{x \rightarrow 0^{+}}|x|=\operatorname{Lim}_{x \rightarrow 0^{+}}(+x)=0
$$

\{because $\left.0^{+}>0 \Rightarrow|x|=+x\right\}$
Limit at zero

$$
\operatorname{Lim}_{x \rightarrow 0^{-}} f(x)=\operatorname{Lim}_{x \rightarrow 0^{+}} f(x)=0
$$

Hence

$$
\operatorname{Lim}_{x \rightarrow 0} f(x)=0
$$

Example 5.6:
Find the limit of modulus function at 2 , figure 5.8

Solution:

$$
f(x)=|x|
$$

Left hand limit at 2:

$$
\operatorname{Lim}_{x \rightarrow 2^{-}} f(x)=\operatorname{Lim}_{x \rightarrow 2^{-}}(+x)=2
$$

\{because $\left.2^{-}>0 \Rightarrow|x|=+x\right\}$

Figure 5.7

Figure 5.8

Right hand limit at 2:

$$
\operatorname{Lim}_{x \rightarrow 2^{+}} f(x)=\operatorname{Lim}_{x \rightarrow 2^{+}}(+x)=2
$$

\{because $\left.2^{+}>0 \Rightarrow|x|=+x\right\}$
Limit at 2:

$$
\operatorname{Lim}_{x \rightarrow 2^{-}} f(x)=\operatorname{Lim}_{x \rightarrow 2^{+}} f(x)=2
$$

Hence

$$
\operatorname{Lim}_{x \rightarrow 2} f(x)=2
$$

DE L' HOPITAL RULE

Theorem:

$f(x)$ and $g(x)$ are two functions if the derivatives of both functions exists and $f(a)=0=g(a)$ then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Proof:

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{h \rightarrow 0} \frac{f(a+h)}{g(a+h)} \rightarrow(1)
$$

By Lagrange's mean value theorem

$$
f(a+h)=f(a)+h f^{\prime}(a+\theta h), \quad 0<\theta<1
$$

Hence equation (1) can be written as

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{\left(f(a)+h f^{\prime}\left(a+\theta_{1} h\right)\right)}{\left(g(a)+h g^{\prime}\left(a+\theta_{2} h\right)\right.}
$$

where $0<\theta_{1}<1$ and $0<\theta_{2}<1$

$$
\begin{aligned}
& \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{h \rightarrow 0} \frac{h f^{\prime}\left(a+\theta_{1} h\right)}{h g^{\prime}\left(a+\theta_{2} h\right)} \\
& \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}
\end{aligned}
$$

In general if the nth derivative of the function exists and

$$
f(a)=f^{\prime}(a)=f^{\prime \prime}(a)=\ldots=f^{(n-1)}(a)=0
$$

then

$$
g(a)=g^{\prime}(a)=g^{\prime \prime}(a)=\cdots=g^{(n-1)}(a)=0
$$

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{n}(x)}{g^{n}(x)}
$$

Example 5.7 :
Evaluate the following limit

$$
\lim _{x \rightarrow \pi / 4} \frac{\sec ^{2} x-2 \tan x}{\sin 4 x} \text { Figure } 5.9
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \pi / 4} \frac{\sec ^{2} x 2 \tan x}{\sin 4 x} \\
= & \lim _{x \rightarrow \pi / 4} \frac{2 \sec ^{2} x \tan x-2 \sec ^{2} x}{4 \cos 4 x} \\
= & \frac{0}{-4}=0
\end{aligned}
$$

Figure 5.9

A UTHPTOR

MT. MIAQSTOOD ATI ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON MATHEMATICS BY
M. MAQSOOD ALI FROM WEBSITE
www.mathbunch .com

$$
\begin{aligned}
& =\lim _{x \rightarrow \pi / 2}\left[\frac{1}{2 \cos x}\right] \\
& =0
\end{aligned}
$$

EXERCISE 5
De I' Hopital rule is applicable if

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{0}{0}
$$

Show that this rule is applicable for the following.
(1) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\infty}{\infty}$,
(2) $\lim [f(x) \cdot g(x)]=0 \times \infty$
(3) $\lim _{x \rightarrow a}^{x \rightarrow a}[f(x)-g(x)=\infty-\infty$
(4) $\lim _{x \rightarrow \infty}\left[f(x)^{g(x)}\right]=0^{0}$
(5) $\lim _{x \rightarrow a}[f(x)]^{g(x)}=1^{\infty}$
(6) $\lim _{x \rightarrow a}\left[f(x) g^{(x)}=\infty^{0}\right.$

Evaluate:

(7) $\lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\operatorname{cosec}^{2} x\right)$
(8) $\lim _{x \rightarrow 2}\left(2-\frac{x}{2}\right)^{\tan \left(\frac{x}{4}\right)}$
(9) $\lim _{x \rightarrow 0}\left[\frac{a}{\left(e^{2 a x}-1\right) x}-\frac{1-a x}{2 x^{2}}\right]$
(10) $\lim _{x \rightarrow 0} \frac{a x^{2}-b^{x^{2}}}{x^{2}}$
(11) $\lim _{x \rightarrow 0}\left(\frac{1}{x} \cot x\right)^{\frac{1}{x}}$
(12) $\lim _{x \rightarrow 0}(\cosh x)^{\operatorname{coth} x}$

