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Chapter 5 

LIMITS 

INDETERMINATE FORMS: 

The undefined values 

�
�   ,  0.∞  ,  0� ,   

�
�  ,   ∞ � ∞  ,  ∞�  ,  1� 

of a function ��	
 at 	 � � are called indeterminate 

forms. 

 

 

LIMIT OF THE FUNCTION                                       
Definition 1: 

          A real number “l” is the limit of a function f at “�”, if 

��	
 gets closer and closer to “l” as 	 approaches “�”. It 

is written as                                               

Lim��� ��	
 � � 

Explanation:                                 

Lim��� ��	
 �  Lim���� ��	
 �  Lim���� ��	
 � � 

Figure 5.1 

         where � – and  �� lie in the deleted neighborhood of 

“�” on a real number line in left and right side of “�” 

respectively. Thus, �� � a � ��.  

Definition 2: 

           A real number “l” is the limit of a function f at “�”. 

If for every real number � � 0 there exist a 

coressponding real number � > 0, such that 

                        |	 �  �|  �  � �  |��	
  �  �|  �  � 

Value and Limit of the Functions: 
         Difference between value of the function and limit 
of the function can be understand by the following 
function                                                  

 ��	
  �  	� �  9
	 �  3  
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Value of the function at 3: 
Substitute 	 �  3                                                 

 ��3
  �  3� �  9
3 �  3  

                              

                                                         �  0
0          �unde&ined
 

Explanation: 
 Simplify the function                                                

                            ��	
  �  	� �  9
	 �  3  

                                       �   �	 '  3
 �	 �  3

�	 �  3
   

                                       (  �	 '  3
 �1
     for    	 �  3 
  because for 	 �  3 

                                            	 �  3
	 �  3 � 3 �  3

3 �  3 

                                                                                                               

                                                          �  0
0  (  1 

Limit of the function at 3: 

                          Lim��, ��	
 �  Lim��,
	�  �   9
	 �  3  

                                                                                                

                                           � Lim��,
�	 '  3
�	 �  3


	 �  3  

                                                          
                                           � Lim��,  �	 ' 3
�1
 

                                       = 6  
Explanation:                                          

	 �  3     �       	 �  3
	 �  3  �  1 (   0

0 

 because 	 �  3 means 	 is very nearly equal to 3 not 
exactly equal to 3. So 	 is either less than 3 �	 � 3
 or 
greater than 3 �	 � 3
. 
 If 	 �  3.00 . . . 01 �  3, then 
          

                     	 �  3
	 �  3  �  3.00 … 01 �  3

3.00 … 01  �  3 
                                    �  0.00 … 01 

0.00 … 01    
                                     �  1 (   0

0       
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LEFT AND RIGHT HAND LIMITS 
Left Hand Limit: 
Left hand limit of a function � is “l” at “a” and written as                                                    

                                              Lim���/ ��	
 � � 

              �� means, it is not equal to negative � ���
 but 

it is just on left side of “�” in the neighborhood of “�”. It 

can be defined as  

                                     ��  0 �� � �, �
 

23                                � � � �  �� � �  
where �� � �, � '  �
 is the neighbourhood of “�”. 

Right Hand Limit: 
 Right hand limit of a function is “l” at “�” written as                                                      

                                     Lim                                                      ���4 ��	
 � � 

                �� means, it is not equal to positive � �'�
 but 

it is just on right side of “�” in the neighborhood of �. It 

can be defined as                                                    

                                          ��  0 ��, � '  �
                                            

23                                      � �  �� �  � ' � 

 On a number line 

figure 5.4. 

Limit of the Function: 
             Limit of the function at “�” ( Lim��� ��	

 exist only 

when the left and right hand limits are equal.                              

                             Lim���/ ��	
 �  Lim���4 ��	
        

So that, if                                            

                             Lim���/ ��	
 � �  � Lim���4 ��	
  

 then                                         

                               Lim��� ��	
 � �   

Example 5.2 : Discuss the limit of the function 

��	
 � 52	 ' 5        for    	 �  5
2	              for    	  8  5 9 

(1)   at 5          (2)  at 6 

 Solution:                                                  
�1
                      Lim��:/ ��	
 � Lim��:/�2	 ' 5
 � 15 

                            Lim��:4 ��	
 � Lim��:4 2	 � 10 

                     Left hand limit ( Right hand limit 

So the limit of ��	
 does not exist at 5. 

Figure 5.5 
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�2
                                Lim��;/ ��	
 � Lim��;/ 2	 � 12 

                             Lim��;4 ��	
 � Lim��;4 2	 � 12 

                       Left hand limit = Right hand limit = 2                                                                 

                               Lim��; ��	
 � 12 

Figure 5.5 

Example 5.3: 

Discuss the limit of Greatest integer function at 2. 

Solution: 

��	
 � <	= 

 Greatest integer function is defined as  

 ��	
 � <	= � �  for   � > 	 � � ' 1, � 0 ?  and  	 0 @ 

so that        

    ��	
 � <	= � 0    for     0 > 	 � 1      or      	 0 A0,   1
 

                          � 1   for     1 > 	 � 2      or      	 0 A1,   2
 

                          � 2   for     2 > 	 � 3      or      	 0 A2,   3
 

                          � 3   for     3 > 	 � 4      or      	 0 A3,   4
 

Left hand limit at 2: 

Lim���/ ��	
 � Lim���/  <	= � 1 

Cbecause 2� � 1 and 2� � 2 � 2� 0 A1,   2
  �
 ��2�
 � 1D 

Right hand limit at 2: 

Lim���4 ��	
 � Lim���4  <	= � 2 

Cbecause 2� � 2 but 2� � 3 � 2� 0 A2,   3
 �
  ��2�
 � 2D 

Limit at 2: 

Lim���/ ��	
 ( Lim���4  A	E 

                                        Figure 5.6 

Hence    Lim��� ��	
  does not exist.  
Example 5.4: 

Discuss the Limit of Greatest integer function at 2.5. 

Solution:     Left hand limit at 2.5: 

Lim���.:/ ��	
 � Lim���.:/  <	= � 2 

Cbecause 2.5� � 2.5 but 2.5� � 2 � 2.5� 0 A2,   3
  �
 ��2.5�
 � 2ED 

Right hand limit at 2.5: 

Lim���.:4 ��	
 � Lim���.:4  <	= � 2 

Csince 2.5� � 2.5 but 2.5� � 3 � 2.5� 0 A2,   3
 

   �  ��2.5�
 � 2D 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

 

 

 

 



www.mathbunch.com                                                       M. MAQSOOD ALI 

 

71 

 

Limit at 2.5:  Lim���.:/ ��	
 � Lim���.:4  ��	
 � 2 
Figure 5.6Figure 5.6Figure 5.6Figure 5.6 

Hence Lim���.:  ��	
 � 2 

Example 5.5: 

Find the limit of modulus function at zero, figure 5.7. 

Solution: 

Modulus function is defined as  

 

            ��	
 � |	| � P �	         for           	 � 00             for           	 � 0'	         for           	 � 0
9 

Left hand limit at zero: Lim���/ ��	
 � Lim���/ |	| � Lim���/��	
 

Cbecause 0� � 0 � |	| � �	D 

Right hand limit at zero: Lim���4 ��	
 � Lim���4 |	| � Lim���4�'	
 � 0 

Cbecause 0� � 0 � |	| � '	D 

 Limit at zero  Lim���/ ��	
 � Lim���4 ��	
 � 0 

Hence Lim���  ��	
 � 0 

Example 5.6: 

Find the limit of modulus function at 2, figure 5.8. 

Solution: 

                   ��	
 � |	|    
Left hand limit at 2: Lim���/ ��	
 � Lim���/�'	
 � 2 

Cbecause 2� � 0 � |	| � '	D 

Right hand limit at 2: Lim���4 ��	
 � Lim���4�'	
 � 2 

Cbecause 2� � 0 � |	| � '	D 

Limit at 2:  Lim���/ ��	
 � Lim���4 ��	
 � 2 

Hence Lim���  ��	
 � 2 
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DE L’ HOPITAL RULE 
Theorem: 

��	
 and Q�	
 are two functions if the derivatives of 

both functions exists and ���
 �  0 � Q��
 then 

                              lim���
��	

Q�	
 � lim���

�S�	

QS�	
 

 

Proof: 

lim���
��	

Q�	
 � limT��

��� ' U

Q�� ' U
      � �1
 

By  Lagrange’s mean value theorem  

��� ' U
 �  ���
 '  U �’�� '  WU
 ,   0 �  W � 1 
Hence  equation (1) can be written as 

lim���
��	

Q�	
 � lim���

X���
 ' U�S�� ' WYU
Z
�Q��
 ' UQ[ �� ' W�U 
 

where 0 < WY � 1 �\] 0 � W� � 1  

lim���
��	

Q�	
 � limT��

U�S�� ' WYU

UQS�� ' W�U
 

                           lim                                     ���
��	

Q�	
 � �S��


QS��
 

In general if the nth derivative of the function exists and 

���
  �  �’��
  �  �’’��
  �  … �  ��^�Y
 ��
  �  0 
        Q��
  �  Q’��
  �  Q’’��
  � _ �  Q�^�Y
��
 � 0  

then 

lim���
��	

Q�	
 � lim���

�^�	

Q^�	
 

Example 5.7 : 

Evaluate the following limit 

lim��`/b
cde�	 � 2f�\	

cg\4	  

Figure 5.9 

Solution:  

                               lim                                         ��`/b
cde�	2f�\	

cg\4	               ,      �0
0
 

� lim��`/b
2cde�	f�\	 � 2cde�	

4e2c4	  

                         � 0
�4 � 0 
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                        � lim��`/�A 1
2e2c	E 

                         � 0  

                    h � d� � 1 

 

EXERCISE 5 

De l ‘ Hopital rule is applicable if 

lim���
��	

Q�	
 � 0

0 

Show that this rule is applicable for the following. 

�1
 lim���
��	

Q�	
 �  ∞

∞  ,   
�2
 lim
          ���

A��	
 . Q�	
E � 0 i ∞ 

�3
  lim
           ���

A��	
 � Q�	
 � ∞ � ∞     
�4
  lim���A�X	
j��
k � 0� 

�5
   lim
             ���

A��	
Ej��
 � 1�    
�6
   lim
             ���

A��	
Q��
 � ∞� 

  
Evaluate: 

�7
  lim
           ���

� 1
	� � e2cde�	
 

�8
   lim
              ���

�2 � 	
2
nop �`�

b 

 

�9
  lim��� q �
�d��� � 1
	 � 1 � �	

2	� r 

�10
    lim
              ���

�	� � s�t

	�  

�11
 lim��� u1
	 e2f	v

Y
�

 

�12
  lim����e2cU	
wxyT� 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


