CALCULUS NUMERICAL ANALYSIS Vol : 1)

ALGEBRAICAL SOLUTION OF EQUATIONS

ALGEBRA is a branch of mathematics. When we study Higher Algebra we see that a quadratic, cubic and biquadratic equations can be solved by Quadratic formula, Cardan's method, Ferrari's method respectively. But the general algebraical solution of equations of a degree higher than the fourth has not been obtained.
The study of "NUMERICAL ANAYTSIS" tell us how can we find the roots of a polynomial equation of degree n. A cubic, quartic or a polynomial equation of degree higher than fourth may be solved by a very famous method which is called Q-D method.
First we discuss the algebrical solution of cubic and biquadratic equations.
Cardan's Method (Solution of a Cubic Equation):
Consider the following cubic equation:-

$$
\begin{equation*}
x^{3}+A x^{2}+B x+C=0 \tag{1}
\end{equation*}
$$

remove the term involving x^{2}

$$
y^{3}+b y+C=0
$$

$$
\rightarrow(2)
$$

To remove the term involving x^{2} :

To remove the second term from the given equation

$$
P x^{3}+A x^{2}+B x+C=0
$$

Let α, β and γ are the roots of equation, so that the sum of the roots is equal to $-A / P$.

$$
\alpha+\beta+\gamma=-\mathrm{A} / \mathrm{P}
$$

If we increase each of the roots by $\mathrm{A} / 3 \mathrm{P}$ so we get a new equation by substituting $x=y-A / 3 P$ in the given equation, whose sum of the roots will be equal to $-\mathrm{A} / \mathrm{P},+\mathrm{A} / \mathrm{P}$ or the co-efficient of second term will be zero. The new equation can be written as

To solve the equation (2)
Put $y=s+t$, then
$(s+t)^{3}=s^{3}+t^{3}+3 s t(s+t)=s^{3}+t^{3}+3 s t y$
So the equation(2) can be written as

$$
\begin{align*}
& s^{3}+t^{3}+3 s t y+b y+c=0 \\
& s^{3}+t^{3}+(3 s t+b) y+c=0 \tag{4}
\end{align*}
$$

Put $\quad 3 s t+b=0$
then $s^{3}+t^{3}=-c$

Equation (5) can be written as

$$
s t=-\frac{b}{3} \quad \Rightarrow \quad s^{3} t^{3}=-b^{3} / 27
$$

Since $s^{3}+t^{3}=-c$ and $s^{3} t^{3}=-b^{3} / 27$, so that s^{3} and t^{3} are the roots of the equation

$$
\begin{align*}
& z^{2}-\left(s^{3}+t^{3}\right) z+\left(s^{3} t^{3}\right)=0 \\
& z^{2}+c z-\frac{b^{3}}{27}=0 \tag{7}
\end{align*}
$$

Solving this equation, we have

$$
z=-\frac{c}{2}+\sqrt{\frac{c^{2}}{4}+\frac{b^{3}}{27}}, \quad-\frac{c}{2}-\sqrt{\frac{c^{2}}{4}+\frac{b^{3}}{27}}
$$

Since s^{3} and t^{3} are the roots of the equation(7) so that

$$
s^{3}=-\frac{c}{2}+\sqrt{\frac{c^{2}}{4}+\frac{b^{3}}{27}}, \quad t^{3}=-\frac{c}{2}-\sqrt{\frac{c^{2}}{4}+\frac{b^{3}}{27}}
$$

The value of y is obtained from the equation

$$
\begin{aligned}
& y=s+t \\
& y=\left\{-\frac{c}{2}+\sqrt{\frac{c^{2}}{4}+\frac{b^{3}}{27}}\right\}^{1 / 3}+\left\{-\frac{c}{2}-\sqrt{\frac{c^{2}}{4}+\frac{b^{3}}{27}}\right\}^{1 / 3}
\end{aligned}
$$

The above solution is generally known as Cardan's solution.
In this case we obtain nine values for x,
Because $s^{3}+t^{3}=-c$ and $s^{3} t^{3}=-b^{3} / 27$,
$s^{3} t^{3}$ would hold if $s t=-\frac{b}{3}, \frac{-\omega b}{3}, \frac{-\omega^{2} b}{3}$
We obtain three values of y substituting $s t=-b / 3$ in equation(3) (where $s^{3}+t^{3}=-c$)

$$
y^{3}+b y+c=0
$$

others six values are obtain from the cubic equations
$y^{3}+\omega b y+c=0, y^{3}+\omega^{2} b y+c=0$
$\left\{\right.$ Note: these equations obtain by putting st $=-\omega b / 3$ and $s t=-\omega^{2} b / 3$ in equation(3), where $\left.s^{3}+t^{3}=-c\right\}$
As we know that equation (2) is a cubic equation, So it has only three cube roots.
Since $s t=-b / 3$, the cube roots are to be taken in pairs so that the product of each pair is rational.The $\omega^{2} s, \omega t$ which fulfill the conditions are s, t or $\omega s, \omega^{2} t$ or $\omega^{2} s, \omega t$ where ω is the cube root of unity.

So that the roots of equation (2) are

$$
y=s+t, \omega s+\omega^{2} t, \omega^{2} s+\omega t
$$

The roots of equation (1) are

$$
x=y-A / 3 p
$$

Irreducible Case $\left[y=(m+i n)^{1 / 3}+(m-i n)^{1 / 3}\right]$:
If $s=(m+i n)^{1 / 3}$ and $t=(m-i n)^{1 / 3}$, then
Put $m=r \cos \theta$ and $n=r \sin \theta$,
where $r=\sqrt{m^{2}+n^{2}}$ and $\theta=\tan ^{-1} \frac{n}{m}$ so that
$(m+i n)^{1 / 3}=\{r(\cos \theta+i \sin \theta)\}^{1 / 3}$
By De Moivre's theorem the three values are
$r^{\frac{1}{3}}(\cos \theta / 3+i \sin \theta / 3), r^{1 / 3}\left(\cos \frac{\theta+2 \pi}{3}+i \sin \frac{\theta+2 \pi}{3}\right)$
and $r^{1 / 3}\left(\cos \frac{\theta+4 \pi}{3}+i \sin \frac{\theta+4 \pi}{3}\right)$
The three values of $(a-i b)^{1 / 3}$ are

$$
r^{\frac{1}{3}}(\cos \theta / 3+i \sin \theta / 3), r^{1 / 3}\left(\cos \frac{\theta+2 \pi}{3}+i \sin \frac{\theta+2 \pi}{3}\right)
$$

and $r^{1 / 3}\left(\cos \frac{\theta+4 \pi}{3}+i \sin \frac{\theta+4 \pi}{3}\right)$
Hence the roots are

$$
\begin{equation*}
2 r^{1 / 3} \cos ^{\theta / 3}, \quad 2 r^{1 / 3} \cos \frac{\theta+2 \pi}{3}, 2 r^{1 / 3} \cos \frac{\theta+4 \pi}{3} \tag{1}
\end{equation*}
$$

Example 2:
Solve $\quad x^{3}+12 x^{2}+66 x+117=0$

Solution:

To remove second term put $y-4$ for x

$$
\begin{align*}
& (y-4)^{3}+12(y-4)^{2}+66(y-4)+117=0 \\
& y^{3}+18 y-19=0 \tag{2}
\end{align*}
$$

Let $y=s+t$

$$
s^{3}+t^{3}+(3 s t+b) y+c=0
$$

$$
s^{3}+t^{3}+(3 s t+18) y-19=0
$$

Put $3 s t+18=0 \Rightarrow s^{3} t^{3}=-216$
then $s^{3}+t^{3}=19$
s^{3} and t^{3} are the roots of the equation

$$
\begin{gather*}
z^{2}-19 z-216=0 \tag{3}\\
z=-8,27
\end{gather*}
$$

Hence $s^{3}=-8 \quad \Rightarrow \quad s=-2$
and $\quad t^{3}=27 \quad \Rightarrow \quad t=3$

The roots of equation (2) are
$y=s+t=-2+3=1$
$y=\omega s+\omega^{2} t=\frac{-1+\sqrt{-3}}{2}(-2)+\frac{-1-\sqrt{-3}}{2}(3)=\frac{-1-5 \sqrt{-3}}{2}$
$y=\omega^{2} s+\omega t=\frac{-1+5 \sqrt{-3}}{2}$
Since $x=y-4$, so the roots of equation(1) are

$$
x=-3, \frac{-9-5 \sqrt{-3}}{2}, \quad \frac{-9+5 \sqrt{-3}}{2}
$$

FERRARI'S METHOD (Biquadratic Equations):

We solve a Biquadratic Equation by Ferrar's method.
Consider the following biquadratic equation

$$
x^{4}+2 a x^{3}+b x^{2}+2 c x+d=0
$$

Adding both side $(m x+n)^{2}$

$$
x^{4}+2 a x^{3}+b x^{2}+2 c x+d+(m x+n)^{2}=(m x+n)^{2}
$$

$$
x^{4}+2 a x^{3}+\left(m^{2}+b\right) x^{2}+2(m n+c) x+\left(n^{2}+d\right)=(m x+n)^{2}
$$

Suppose that the left hand side is equal to $\left(x^{2}+a x+k\right)^{2}$

$$
x^{4}+2 a x^{3}+\left(m^{2}+b\right) x^{2}+2(m n+c) x+\left(n^{2}+d\right)=\left(x^{2}+a x+k\right)^{2}
$$

$x^{4}+2 a x^{3}+\left(m^{2}+b\right) x^{2}+2(m n+c) x+\left(n^{2}+d\right)=x^{4}+2 a x^{3}+\left(2 k+a^{2}\right) x^{2}$

$$
+2 a k x+k^{2}
$$

By equating the coefficients, we have

$$
m^{2}=2 k+a^{2}-b, m n=a k-c, n^{2}=k^{2}-d
$$

To eliminate m and n, we write

$$
\begin{aligned}
m^{2} n^{2} & =(m n)^{2} \\
\left(2 k+a^{2}-b\right)\left(k^{2}-d\right) & =(a k-c)^{2} \\
2 k^{3}-b k^{2}+2(a c-d) k & +\left(b d-a^{2} d-c^{2}\right)=0
\end{aligned}
$$

This equation is satisfied for one real value of k. To find either real value of k is positive or negative, suppose that left hand side is equal to $f(k)$. Substituting $+\infty, 0,-\infty f o r k$, we have

$$
f(+\infty)=\infty, f(0)=r, f(-\infty)=-\infty
$$

If r is positive, then k is negative, if r is negative then k is positive.
We can obtain the value of m and n after finding the value of k. Since

$$
\begin{array}{r}
\left(x^{2}+a x+k\right)^{2}=(m x+n)^{2} \\
x^{2}+a x+k= \pm(m x+n)
\end{array}
$$

We have two equations to find the values of x.

$$
\begin{gathered}
x^{2}+(a-m) x+(k-n)=0 \\
x^{2}+(a+m) x+(k+n)=0
\end{gathered}
$$

and
When the Coefficient of $\boldsymbol{x}^{\mathbf{4}}$ is not equal to 1:

$$
p x^{4}+2 a x^{3}+b x^{2}+2 c x+d=0
$$

In this case we suppose left hand side is equal to

$$
p\left(x^{2}+\frac{a}{p} x+k\right)^{2}
$$

Example 3:

Solve $x^{4}+2 x^{3}-5 x^{2}+6 x-3=0$

Solution:

Adding $(m x+n)^{2}$ both side in equation (1)

$$
\begin{array}{r}
x^{4}+2 x^{3}-5 x^{2}+6 x-3+(m x+n)^{2}=(m x+n)^{2} \\
x^{4}+2 x^{3}+\left(m^{2}-5\right) x^{2}+(2 m n+6) x+\left(n^{2}-3\right)=(m x+n)^{2} \tag{2}
\end{array}
$$

Suppose that the left hand side is equal to $\left(x^{2}+x+k\right)^{2}$

$$
x^{4}+2 x^{3}+\left(m^{2}-5\right) x^{2}+(2 m n+6) x+\left(n^{2}-3\right)=\left(x^{2}+x+k\right)^{2}
$$

$$
x^{4}+2 x^{3}+\left(m^{2}-5\right) x^{2}+(2 m n+6) x+\left(n^{2}-3\right)=x^{4}+2 x^{3}+(1+2 k) x^{2}+2 k x+k^{2}
$$

Equating the coefficients, we have
$m^{2}-5=1+2 k, 2 m n+6=2 k, n^{2}-3=k^{2}$
$m^{2}=2 k+6 \quad, m n=k-3, \quad, n^{2}=k^{2}+3$
So that

$$
m^{2} n^{2}=(m n)^{2}
$$

$(2 k+6)\left(k^{2}+3\right)=(k-3)^{2}$
$2 k^{3}+5 k^{2}+12 k+9=0$
This equation is satisfied for $k=-1$
thus $m^{2}=4 \quad \Rightarrow \quad m=2$
and $m n=k-3 \quad \Rightarrow \quad n=-2$
we have supposed that

$$
\begin{aligned}
& \left(x^{2}+x+k\right)^{2}=(m x+n)^{2} \\
& \left(x^{2}+x-1\right)^{2}=(2 x-2)^{2}
\end{aligned}
$$

\[

\]

METHOD OF DESCARTES:

Consider the following equation

$$
\begin{equation*}
x^{4}+a_{1} x^{3}+a_{2} x^{2}+a_{3} x+a_{4}=0 \tag{1}
\end{equation*}
$$

To remove the second term we divide successively by $\left(x+\frac{a_{1}}{4}\right)$, using synthetic divide method. The transformed equation is

$$
x^{4}+a x^{3}+b x^{2}+c x+d=0
$$

To find the roots of the above biquadratic equation suppose that

$$
\begin{aligned}
& x^{4}+a x^{3}+b x^{2}+c x+d=\left(x^{2}+k x+m\right)\left(x^{2}-k x+n\right) \\
& x^{4}+\left(m+n-k^{2}\right) x^{2}+k(n-m) x+m n
\end{aligned}
$$

by equating the conefficients, we have

$$
\begin{array}{lll}
m+n-k^{2}=a & , \quad k(n-m)=b, & m n=c \\
n+m=a+k^{2} & , n-m=b / k, & m n=c
\end{array}
$$

We obtain m and n by first two equations
so that $2 m=a+k^{2}-\frac{b}{k}$ and $2 n=a+k^{2}+\frac{b}{k}$
$\Rightarrow \quad m=\frac{k^{3}+a k-b}{2 k}$ and $n=\frac{k^{3}+a k+b}{2 k}$
Substituting these values in third equation, we have

$$
\begin{aligned}
& \quad\left(k^{3}+a k-b\right)\left(k^{3}+a k+b\right)=4 k^{2} c \\
& k^{6}+2 a k^{4}+\left(a^{2}-4 c\right) k^{2}-b^{2}=0 \\
&\left(k^{2}\right)^{3}+2 a\left(k^{2}\right)^{2}+\left(a^{2}-4 c\right) k^{2}-b^{2}=0 \\
& \text { then } \\
& t^{3}+2 a t^{2}+\left(a^{2}-4 c\right) t-b^{2}=0
\end{aligned}
$$

then

It is a cubic equation which has a real positive root. Substituting the values of m, n and k in the following equation.

$$
x^{4}+a x^{2}+b x+c=\left(x^{2}+k x+m\right)\left(x^{2}-k x+n\right)=0
$$

we find the value of x by the following equations.

$$
x^{2}+k x+m=0 \quad, \quad x^{2}-k x+n=0
$$

Note: To remove the second term of the following equation

$$
b_{1} x^{4}+b_{2} x^{3}+b_{3} x^{2}+b_{4} x+b_{5}=0
$$

Divide the equation by $\left(x+\frac{b_{2}}{4 b_{1}}\right)$ using synthetic division method.
Example 4:
Solve

$$
x^{4}-12 x^{3}+44 x^{2}-56 x+20=0
$$

Solution:-

To remove the second term, dividing by $(x-3)$

| 3 | 1 | -12 | 44 | -56 | 20 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | | 3 | -27 | 5 | -15 |
| | 1 | -9 | 17 | -5 | 5 |
| | | 3 | -18 | -3 | |
| | 1 | -6 | -1 | -8 | |
| | | 3 | -9 | | |
| | 1 | -3 | -10 | | |
| | | 3 | | | |
| | 1 | 0 | | | |
| | 1 | | | | |

Hence the result is

$$
x^{4}-10 x^{2}-8 x+5=0
$$

Suppose that

$$
\begin{aligned}
& x^{4}-10 x^{2}-8 x+5=\left(x^{2}+k x+m\right)\left(x^{2}-k x+n\right) \\
= & x^{4}+\left(m+n-k^{2}\right) x^{2}+k(n-m) x+m n
\end{aligned}
$$

By equating the conefficients, we have

$$
\begin{array}{rr}
m+n-k^{2}=-10, & k(n-m)=-8
\end{array}, \quad m n=5
$$

By adding and subtracting first two equations, we get

$$
n=\frac{k^{3}-10 k-8}{2 k} \quad \text { and } \quad m=\frac{k^{3}-10 k+8}{2 k}
$$

Substituting these values in third equation, we have

$$
\left(\frac{k^{3}-10 k-8}{2 k}\right)\left(\frac{k^{3}-10 k+8}{2 k}\right)=5
$$

or

$$
k^{6}-2 a k^{4}+80 k^{2}-64=0
$$

$$
\begin{array}{r}
\text { Let } t=k^{2} \quad \begin{array}{r}
\left(k^{2}\right)^{3}-20\left(k^{2}\right)^{2}+80 k^{2}-64=0 \\
t^{3}-20 t^{2}+80 t-64=0
\end{array} ~
\end{array}
$$

It is a cubic equation which has a root 4 .
Thus $t=k^{2}=4 \quad \Rightarrow \quad k= \pm 2$
We consider only one value either $k=2$ or $k=-2$
If $k=2$ then $m=-1$ and $n=-5$
So that

$$
\begin{array}{ll}
& x^{4}-10 x^{2}-8 x+5=\left(x^{2}+2 x-1\right)\left(x^{2}-2 x-5\right)=0 \\
\Rightarrow & x^{2}+2 x-1=0, \quad x^{2}-2 x-5=0 \\
\Rightarrow & x=-1 \pm \sqrt{2} \quad, \quad x=-1 \pm \sqrt{6}
\end{array}
$$

EXERCISE D-2
Solve the following equations by Cardan's method.
(1) $x^{3}+30 x+117=0$
(2) $x^{3}-12 x-20=0$
(3) $x^{3}+9 x^{2}+63 x+98=0$
(4) $x^{3}+3 x^{2}+21 x+38=0$
(5) $x^{3}+15 x^{2}+60 x+176=0$
(6) $x^{3}+12 x^{2}+36 x+8=0$
(7) $x^{3}+6 x^{2}+6 x-8=0$
(8) $x^{3}+15 x^{2}+63 x+73=0$
(9) $x^{3}-9 x^{2}+8=0$
(10) $4 x^{3}-9 x^{2}+18 x-4=0$
(11) $2 x^{3}-3 x^{2}+6 x-9=0$

Solve the following equations by Ferrari's method.
(12) $x^{4}-4 x^{3}+2 x^{2}+12 x-15=0$
(13) $x^{4}+6 x^{3}+4 x^{2}-12 x-12=0$
(14) $x^{4}-6 x^{3}+6 x^{2}+6 x-7=0$
(15) $x^{4}-16 x^{3}+59 x^{2}-2 x-21=0$
(16) $x^{4}-3 x^{2}-24 x-7=0$
(17) $x^{4}-18 x^{2}-16 x-3=0$
(18) $x^{4}-17 x^{2}+30 x-9=0$
(19) $4 x^{4}-32 x^{3}+47 x^{2}-2 x-5=0$
(20) $9 x^{4}+90 x^{3}+198 x^{2}-60 x-16=0$
(21) $16 x^{4}+32 x^{3}+23 x^{2}+2 x+7=0$

Solve the following equations by Descartes' method.
(22) $x^{4}-2 x^{2}-12 x-8=0$
(23) $x^{4}-x^{2}+2 x-1=0$
(24) $x^{4}+8 x^{2}+3 x+72=0$
(25) $x^{4}-13 x^{2}-2 x+20=0$
(26) $x^{4}+x^{2}-\sqrt{2} x+2=0$
(27) $x^{4}-14 x^{2}+3 \sqrt{5} x+18=0$
(28) $x^{4}-12 x^{3}+29 x^{2}-52 x-70=0$
(29) $x^{4}-8 x^{3}+23 x^{2}-6 x-153=0$
(30) $x^{4}+8 x^{3}+21 x^{2}+20 x+12 \sqrt{5} x+24 \sqrt{5}-35=0$
(31) If one root of the following equation is 3 , then find other four roots using

Descartes' method.

$$
x^{5}-3 x^{4}-11 x^{3}+37 x^{2}+9 x-63=0
$$

AUTMTIOR

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
ALL BOOKSAND CD ON MATHEMATICS BY
M. MAQSOOD ALI

FROM WEBSITE
www.mathbunch.com

