CALCULUS NUMERICAL ANALYSIS Vol : 1)

Section D
NUMERICAL METHODS

ERRORS

ROUND OFF ERROR:
This error arises when the decimal fraction is rounded or chopped after the final digit.
Rounding off the numbers 1.2592367, 3.92876528, 9.33333333, 2.76359248 to three decimals, the numbers become 1.259, 3.929, 9.333 and 2.764 . So that the numbers 1.259, $3.929,9.333$ and 2.764 are not true values, these are only approximate values. When we use these numbers in any calculation, the result have an error which is due to the rounding the numbers.
Rounding error is the most difficult to estimate. TRUNCATION ERROR:

This error arises when an infinite process reduce into finite one.
For example some function have infinite number of terms in expansion, like that

To calculate the value of the function $f(x)$ for x we truncate it after some terms.

$$
\begin{aligned}
\sin x & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} \\
\cos x & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!} \\
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}
\end{aligned}
$$

These values have an error which is called truncation error.
Truncation error may be estimated and thus effectively reduced.

ABSOLUTE ERROR AND RELATIVE ERROR:

The absolute and relative errors are defined as
Absolute error =Calculated value - True value

Relative error $=\frac{\text { Absolute error }}{\text { True value }}$
The absolute error is used to find the error in calculation but relative error is a compares the two errors.
For example, suppose that two person A and Z have 100 and 100,000 rupees respectively. A counts them 110 rupees and $Z 100010$ rupees.
Absolute error for $A=110-100=10$
Absolute error for $Z=100010-100000=10$
Relative error $A=\frac{\text { absolute error }}{\text { True value }}=\frac{10}{100}=0.1$
Relative error $Z=\frac{\text { absolute error }}{\text { True value }}=\frac{10}{100000}=0.0001$
Above results shows that the absolute error are same for both A and Z, but relative error for Z is much less than relative error for A
Therefore, relative error shows that A made a major mistake than Z.

ESTIMATION OF ERROR IN

(i) SUM (ii) PRODUCT (iii) QUOTIENT (iv) FUNCTION OF ONE VARIABLE:
(i) $y=x_{1} \pm x_{2} \pm x_{3} \pm \cdots \pm x_{n}$

If $\pm \delta x_{1}, \pm \delta x_{2}, \pm \delta x_{3}, \cdots, \pm \delta_{n}$ be the errors in $x_{1}, x_{2}, x_{3}, \cdots, x_{n}$ respectively
,then corresponding error in y be $\pm \delta y$.

$$
\begin{aligned}
y \pm \delta y & =\left(x_{1} \pm \delta x_{1}\right)+\left(x_{2} \pm \delta x_{2}\right)+\left(x_{3} \pm \delta x_{3}\right)+\cdots+\left(x_{n} \pm \delta x_{n}\right) \\
\pm \delta y & = \pm\left(\delta x_{1}+\delta x_{2}+\delta x_{3,}+\cdots+\delta x_{n}\right)
\end{aligned}
$$

Absolute error in y

$$
|\delta y|=\left|\delta x_{1}+\delta x_{2}+\delta x_{3}+\cdots+\delta x_{n}\right|
$$

Max. absolute error in \boldsymbol{y}

$$
|\delta y| \leq\left|\delta x_{1}\right|+\left|\delta x_{2}\right|+\left|\delta x_{3}\right|+\cdots+\left|\delta x_{n}\right|=\sum_{i=1}^{n}\left|\delta x_{n}\right|
$$

Hence absolute error in y is less than or equal to sum of absolute error in $x_{1}, x_{2}, x_{3}, \cdots, x_{n}$.

Maximum relative error:

$$
\frac{|\delta y|}{|y|} \leq \sum_{i=1}^{n} \frac{\left|\delta x_{n}\right|}{|y|}
$$

(ii) $y=x_{1} x_{2}$

If $\pm \delta x_{1}$ and $\pm \delta x_{2}$ are the errors in x_{1} and x_{2} respectively, then the corresponding error in y
is $\pm \delta y$.

$$
\begin{aligned}
\mathrm{y} \pm \delta \mathrm{y} & =\left(x_{1} \pm \delta x_{1}\right)\left(x_{2} \pm \delta x_{2}\right) \\
\pm \delta \mathrm{y} & = \pm\left(\delta x_{2}\right) x_{1} \pm\left(\delta x_{1}\right) x_{2} \pm \delta x_{1} \delta x_{2}
\end{aligned}
$$

(iii) $\mathrm{y}=\frac{x_{1}}{x_{2}}=x_{1} x_{2}^{-1}$

$$
\begin{aligned}
y \pm \delta y & =\left(x_{1} \pm \delta x_{1}\right)\left(x_{2} \pm \delta x_{2}\right)^{-1} \\
& =\frac{1}{x_{2}}\left(x_{1} \pm \delta x_{1}\right)\left[1 \pm\left(\frac{\delta x_{2}}{x_{2}}\right) \pm \cdots\right]^{-1}
\end{aligned}
$$

Neglecting square and higher power of $\left(\frac{\delta x_{2}}{x_{2}}\right)$,we get

$$
\begin{aligned}
& y \pm \delta y=\frac{1}{x_{2}}\left(x_{1} \pm \delta x_{1}\right)\left(1 \pm \frac{\delta x_{2}}{x_{2}}\right) \\
& y \pm \delta y=\frac{1}{x_{2}}\left(x_{1} \pm \frac{x_{1}}{x_{2}} \delta x_{2} \pm \delta x_{1} \pm \frac{\delta x_{1} \delta x_{2}}{x_{2}}\right)
\end{aligned}
$$

Neglecting $\frac{\delta x_{1} \delta x_{2}}{x_{2}}$

$$
y \pm \delta y=\frac{x_{1}}{x_{2}} \pm \frac{x_{1}}{x_{2}^{2}} \delta x_{2} \pm \frac{\delta x_{1}}{x_{2}}
$$

$$
\begin{aligned}
& \pm \delta y= \pm\left[\frac{x_{1}}{x_{2}^{2}} \delta x_{2}+\frac{\delta x_{1}}{x_{2}}\right] \\
& |\delta y| \leq\left|\frac{x_{1}}{x_{2}^{2}}\right|\left|\delta x_{2}\right|+\left|\frac{1}{x_{2}}\right|\left|\delta x_{1}\right|
\end{aligned}
$$

Relative error in y :

$$
\frac{|\delta y|}{|y|} \leq \frac{\left|\delta x_{1}\right|}{\left|x_{1}\right|}+\frac{\left|\delta x_{2}\right|}{\left|x_{2}\right|}
$$

The relative error in product and quotient both are same.
So, if $y=x^{\frac{t}{1}}, x^{\frac{t}{2}}, \cdots x^{\frac{t}{n}}$ then the relative error in y is

$$
\frac{|\delta y|}{|y|} \leq \frac{\left|\delta x_{1}\right|}{\left|x_{1}\right|}+\frac{\left|\delta x_{2}\right|}{\left|x_{2}\right|}+\cdots+\frac{\left|\delta x_{n}\right|}{\left|x_{n}\right|}
$$

(iv) $y=f(x)$

Let $\pm \delta x$ be the error in x and the corresponding error in y be $\pm \delta y$.

$$
y \pm \delta y=f(x \pm \delta x)
$$

Applying Taylor's series

$$
y \pm \delta y=f(x) \pm(\delta x) f^{\prime}(x) \pm \frac{(\delta x)^{2}}{2!} f^{\prime \prime}(x) \pm \cdots
$$

Neglecting square and higher power of (δx)

$$
\begin{aligned}
y \pm \delta x & =f(x) \pm(\delta x) f^{\prime}(x) \\
\pm \delta y & = \pm(\delta x) f^{\prime}(x) \\
|\delta y| & =|\delta x|\left|f^{\prime}(x)\right|
\end{aligned}
$$

Relative Error:

$$
\frac{|\delta y|}{|y|}=\frac{|\delta y|\left|f^{\prime}(x)\right|}{|f(x)|}
$$

(v) $y=f\left(x_{1}, x_{2}\right.$

Absolute error

$$
|\delta y|=\left|\delta x_{1} \frac{\hat{c} f}{\hat{\mathrm{c}} x_{1}}+\delta x_{2} \frac{\hat{c} f}{\hat{\mathrm{c}} x_{1}}+\cdots+\delta x_{n} \frac{\hat{c} f}{\hat{\mathrm{c}} x_{n}}\right|
$$

Example 1
The following quantities are in error as indicated

$$
x=50 \pm 0.05, y=100 \pm 0.01, z=300 \pm 0.4
$$

Determine the maximum values of the absolute and relative errors in the result of each of the following operations.
(i) $x+5 y+z$
(ii) $\operatorname{In}(x+y)$

Solution:-

(i) Let $f=x+5 y+z$

Maximum absolute error

$$
\begin{aligned}
& \qquad|\delta f|=|\delta x|+5|\delta y|+|\delta z|=0.05+5(0.01)+0.4=0.5 \\
& \text { Relative error }=\frac{|\delta f|}{|f|}=\frac{0.5}{850}=5.88 \times 10^{-4}
\end{aligned}
$$

(ii) Let $f=\operatorname{In}(x+y)$

Maximum absolute error

$$
\begin{aligned}
|\delta f| & =|\delta x|\left|\frac{\hat{c} f}{\hat{c} x}\right|+|\delta y|\left|\frac{\hat{c} f}{\hat{c} y}\right| \\
& =(0.05)\left|\frac{1}{x+y}\right|+(0.01)\left|\frac{1}{x+y}\right|=0.0004
\end{aligned}
$$

Maximum relative error

$$
\frac{|\delta f|}{|f|}=0.0004
$$

EXERCISE D-1
Q. 1 If $f=x^{\frac{+}{1} m_{1}}, x^{\frac{+}{2} m_{2}}, x^{\frac{+}{3} m_{3}}, \cdots, x^{\frac{+}{n} m_{n}}$
then show that the relative error in f is given by

$$
\frac{|\delta f|}{|f|} \leq\left|m_{1}\right|\left|\frac{\delta x_{1}}{x_{1}}\right|+\left|m_{2}\right|\left|\frac{\delta x_{2}}{x_{2}}\right|+\cdots+\left|m_{n}\right|\left|\frac{\delta x_{n}}{x_{n}}\right|
$$

Q. 2 The following quantities are in error as indicated.

$$
x=15 \pm 0.5, y=50 \pm 0.6, z=45 \pm 0.4
$$

Determine the maximum value of the relative error in the result of each of the following.
(i) $x+5 y+3 z$
(ii) $5 x-3 y+2 z$
(iii) $x y z$
(iv) $x y / z$
(v) $\ln (y-x)$
(vi) $\sqrt{x y}$
Q. 3 Find the error in $\sin 10^{\circ} 30^{\prime} \div \log _{10} 507.5$, assuming that the angle may be in error by 1^{\prime} and that the number 507.5 may be in error 0.1.
Q. 4 Find the error in the evaluation of the multiplication $\left(\cos 70^{\circ} 15^{\prime}\right)\left(\sin 3^{\circ} 20^{\prime}\right)$ assuming that the angles may be in error by 2^{\prime} and 1^{\prime} respectively .

Mr Mr
ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON MATHENATICS

BY

M. MAQSOODALI

FROM WEBSITE
www-mathbunch.com

