CALCULUS NUMERICAL ANALYSIS Vol: 1)

DIFFERENTIATION

A function $z=f(x, y)$ is said to be differentiable at (x, y) if
there exist a relation of the form.

$$
\begin{gathered}
f=(x+\Delta x, y+\Delta y)-f(x, y)=A \Delta x+B \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y \\
\text { or } \\
\Delta z=A \Delta x+B \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y
\end{gathered}
$$

where A and B are the function of x and y and ε_{1} and ε_{2} are the functions of Δx and Δy such that

$$
\lim _{\substack{\Delta x \rightarrow 0 \\ \Delta y \rightarrow 0}} \varepsilon_{1}=0 \text { and } \lim _{\substack{\Delta x \rightarrow 0 \\ \Delta y \rightarrow 0}} \varepsilon_{2}=0
$$

Difference Between Differentiation And Derivative:
Differentiability and derivability are two different operations. To understand the difference between these two operations consider a function of two variables $z=f(x, y)$.
"In forming partial derivative $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ changes Δx and Δy in x and y are consider separately".

For example, if we want to find the derivative of f with respect to x then y must be constant.

$$
\frac{\partial z}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y)-f(x, y)}{\Delta x}
$$

The derivative of f with respect to y holding x constant is given below.

$$
\frac{\partial z}{\partial y}=\lim _{\Delta y \rightarrow 0} \frac{f(x, y+\Delta y)-f(x, y)}{\Delta y}
$$

But differentiation of $f(x, y)$ shows the effect of changing Δx and Δy in x and y together.
$f(x+\Delta x, y+\Delta y)-f(x, y)=A \Delta x+B \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y$ Examples 1:

Using the definition of differentiation of a function
$z=f(x, y)$.
that is
$f(x+\Delta x, y+\Delta y)-f(x, y)=A \Delta x+B . \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y$
find A and B for the following function.

$$
\mathrm{z}=f(x, y)=x^{2}+x y+y^{2}
$$

and also show that $A=\frac{\partial z}{\partial x}$ and $B=\frac{\partial z}{\partial y}$

Solution:

$$
f(x, y)=x^{2}+x y+y^{2}
$$

$f(x+\Delta x, y+\Delta y)-f(x, y)$
$=\left\{(x+\Delta x)^{2}+(x+\Delta x)(y+\Delta y)+(y+\Delta y)^{2}\right\}$
$-\left(x^{2}+x y+y^{2}\right)$

$$
\begin{aligned}
= & x^{2}+2 x \Delta x+(\Delta x)^{2}+x y+x \Delta y+y \Delta x+\Delta x \Delta y+y^{2} \\
& +2 y \Delta y+(\Delta y)^{2}-x^{2}-x y-y^{2} \\
= & 2 x \Delta x+y \Delta x+x \Delta y+2 y \Delta y+(\Delta x)^{2}+\Delta x \cdot \Delta y+\Delta y^{2} \\
= & (2 x+y) \Delta x+(x+2 y) \Delta y+(\Delta x+\Delta y) \Delta x+\Delta y . \Delta y \\
\Rightarrow & \varepsilon_{1}=\Delta x+\Delta y \quad \text { and } \quad \varepsilon_{2}=\Delta y
\end{aligned}
$$

$$
\text { and } \quad \mathrm{A}=2 x+y=\frac{\partial z}{\partial x} \quad, \quad B=x+2 y=\frac{\partial z}{\partial y}
$$

THEOREM C-3:
A differentiable function is also derivable
or if $z=f(x, y)$ is differentiable then $A=\frac{\partial z}{\partial y}$ and $B=\frac{\partial z}{\partial y}$.
Proof:
Let $z=f(x, y)$ is a differentiable function.

$$
\Delta z=A \Delta x+B \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y \quad \rightarrow(1)
$$

we have to prove that f is derivable.
$z=f(x, y)$ is derivable mean partial derivatives
$\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ exist.
First suppose that there is no change in y that is $\Delta y=0$ According to equation (1)

$$
\begin{aligned}
& \Delta z=A \Delta x+\varepsilon_{1} \Delta x \\
& A+\varepsilon_{1}=\Delta z / \Delta x
\end{aligned}
$$

$$
=\frac{\Delta z}{\Delta x}-
$$

$\frac{z}{x}-\varepsilon_{1}$
A is a function of x and y and ε_{1} depends on Δx and Δy.
$\varepsilon_{1} \rightarrow 0$ as $\Delta x \rightarrow 0$
$A=\operatorname{Lim}_{\Delta x \rightarrow 0} \frac{\Delta z}{\Delta x}=\operatorname{Lim}_{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y)-f(x, y)}{\Delta x}=\frac{\partial z}{\partial x}$
Similarly,

$$
B=\operatorname{Lim}_{\Delta y \rightarrow 0} \frac{\Delta z}{\Delta x}=\operatorname{Lim}_{\Delta y \rightarrow 0} \frac{f(x, y+\Delta y)-f(x, y)}{\Delta y}=\frac{\partial z}{\partial y}
$$

Hence f is derivable.
Example 2
(3) Show that the following function is derivable but not differentiable at $(0,0)$.

$$
f(x, y)=\frac{p x^{2}+q y^{2}}{x+y},(x, y) \neq(0,0), f(0,0)=0
$$

Solution:

$$
f_{x}(0,0)=\operatorname{Lim}_{\Delta x \rightarrow 0} \frac{f(\Delta x, 0)-f(0,0)}{\Delta x}=p
$$

$$
f_{y}(0,0)=\operatorname{Lim}_{\Delta y \rightarrow 0} \frac{f(0, \Delta y)-f(0,0)}{\Delta y}=q
$$

Partial derivative of f exist, so f is derivable.

Differentiability:

$$
\begin{aligned}
f(\Delta x, \Delta y)-f(0,0) & =A \Delta x+B \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y \\
\frac{p \Delta x^{2}+q \Delta y^{2}}{\Delta x+\Delta y} & =p \Delta x+q \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y
\end{aligned}
$$

taking $\Delta y=m \Delta x$

$$
\begin{aligned}
\frac{p+q m^{2}}{1+m}=p & +q m+\varepsilon_{1}+\varepsilon_{2} \mathrm{~m} \\
\text { L.H.S } & \rightarrow \frac{p+q m^{2}}{1+m} \\
\text { R.H.S } & \rightarrow p+q m \neq \frac{p+q m^{2}}{1+m}
\end{aligned}
$$

and
Hence $f(x, y)$ is not differentiable at $(0,0)$.
Example 3:
Whether the following function f is differentiable or not at
$(0,0)$.

$$
f(x, y)=\sqrt{|x y|}
$$

Solution:

$$
\begin{aligned}
& A=f_{x}(0,0)=\operatorname{Lim}_{\Delta x \rightarrow 0} \frac{f(\Delta x, 0)-f(0,0)}{\Delta x}=0 \\
& B=f_{y}(0,0)=\Delta y \rightarrow 0 \frac{f(0, \Delta y)-f(0,0)}{\Delta x}=0
\end{aligned}
$$

Partial derivatives of f exist.
Differentiability at $(\mathbf{0}, \mathbf{0})$:

$$
\begin{aligned}
& \begin{aligned}
f(0+\Delta x, 0+\Delta y)-f(0,0)= & \Delta x A+\Delta y . B \\
& +\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y
\end{aligned} \\
& \qquad \begin{aligned}
\sqrt{|\Delta x . \Delta y|}-0 & =0+0+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y \\
\sqrt{|\Delta x . \Delta y|}= & \varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y
\end{aligned} \\
& \text { Let } \Delta y=m \cdot \Delta x
\end{aligned} \begin{aligned}
\sqrt{|\Delta x \cdot m \Delta x|} & =\varepsilon_{1} \Delta x+\varepsilon_{2}(m \Delta x) \\
\sqrt{|m|} & =\varepsilon_{1}+m \varepsilon_{2}
\end{aligned}
$$

But L.H.S $\rightarrow \sqrt{|m|} \neq 0$
Therefore $f(x, y)$ is not differentiable at $(0,0)$.

Example-4:
Discuss the differentiability of f at $(0,0)$
$f(x, y)=|x|+|y|$
Solution:

$$
\begin{aligned}
& \qquad \begin{aligned}
f_{x}(0,0) & =\operatorname{Lim}_{\Delta x \rightarrow 0} \frac{f(\Delta x, 0)-f(0,0)}{\Delta x} \\
& =\operatorname{Lim}_{\Delta x \rightarrow 0} \frac{|\Delta x|}{\Delta x}= \pm 1
\end{aligned} \\
& \text { Lim } \operatorname{Lbecause}_{\Delta x \rightarrow 0^{-}} \frac{|\Delta x|}{\Delta x}=\frac{\operatorname{Lim}}{\Delta x \rightarrow 0^{-}} \frac{-\Delta x}{\Delta x}=-1
\end{aligned}
$$

and $\left.\operatorname{Lim}_{\Delta x \rightarrow 0^{+}} \frac{|\Delta x|}{\Delta x}=\operatorname{Lim}_{\Delta x \rightarrow 0^{+}} \frac{\Delta x}{\Delta x}=1\right\}$
Similarly $f_{y}(0,0)= \pm 1$.
Partial derivatives of f do not exist at $(0,0)$.
Hence $f(x, y)$ is not differentiable at $(0,0)$.
Theorem C-4:
If $f(x, y)$ is differentiable at (a, b) it is continuous there.
Taking an example show that converse is not true.
Proof:
Since $f(x, y)$ is differentiable at (a, b), so
$f(x+\Delta x, y+\Delta y)-f(a, b)=A \Delta x+B \Delta y$

$$
+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y
$$

$\varepsilon_{1} \rightarrow 0, \varepsilon_{2} \rightarrow 0$ as $\Delta x \rightarrow 0, \Delta y \rightarrow 0$
Since $f(x, y)$ is differentiable, so the partial derivatives of f
exist and do not depend on Δx or Δy, therefore

$$
A \Delta x=f_{x}(a, b) \cdot \Delta x \rightarrow 0 \text { as } \Delta x \rightarrow 0
$$

and $\quad B \Delta y=f_{y}(a, b) \cdot \Delta y \rightarrow 0$ as $\Delta y \rightarrow 0$
Then we can write

$$
\begin{gathered}
(\Delta x, \Delta y) \rightarrow(0,0) \\
\operatorname{Lim}^{\operatorname{Lim}} f(x+\Delta x, y+\Delta y)-f(a, b)=0 \\
(\Delta x, \Delta y) \rightarrow(0,0) \\
f(x+\Delta x, y+\Delta y)=f(a, b)
\end{gathered}
$$

Hence $f(x, y)$ is continuous at (a, b).

Converse:

$$
f(x, y)=\frac{x y}{\sqrt{x^{2}+y^{2}}}
$$

is continuous at $(0,0)$ but not differentiable there.
Exercise C-5
Show that the following functions are derivable but not differentiable at $(0,0)$.
(1) $f(x, y)=\left\{\begin{array}{c}\frac{x y}{\sqrt{x^{2}+y^{2}}} \\ 0\end{array}\right.$
for $\quad(x, y) \neq(0,0)$
for $\quad(x, y)=(0,0)$
(2) $f(x, y)= \begin{cases}\frac{a x^{2}+b y^{2}}{x+y} & \text { for } \quad(x, y) \neq(0,0) \\ 0 & \text { for } \quad(x, y)=(0,0)\end{cases}$
(3) Show that the following function is differentiable at $(0,0)$

$$
f(x, y)=\left\{\begin{array}{lll}
\frac{x^{6}-2 y^{6}}{x^{2}+y^{2}} & \text { for } & (x, y) \neq(0,0) \\
0 & \text { for } & (x, y)=(0,0)
\end{array}\right.
$$

AUMPEOR
MM
MIPQSOOD
AIT
ASSISTANT
PROFESSOR OF
MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON MATHEMATICS
BY
M. MAQSOOD ALI

FROM WEBSITE
www.mathbunch.com

DIFFERENTIAL

If $z=f(x, y)$ be a function of two variables then $d z$ is called differential such that

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

In general, if $z=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ then

$$
d z=\frac{\partial z}{\partial x_{1}} d x_{1}+\frac{\partial z}{\partial x_{2}} d x_{2}+\cdots+\frac{\partial z}{\partial x_{n}} d x_{n}
$$

An application of differential:

An important application of the differential is the assessment of the impact that an error in measurement may have on the computed value of a function.
Example 1:
The length x of a rectangle is measured to be 100 inches with a possible error of 0.5 inch and the width y is measured to be 40 inches with a possible error of 0.15 inch. Estimate the largest error in the computed area of the rectangle.

Solution:

Since $x=100, y=40, d x=0.5$ and $d y=0.15$
The area function is

$\frac{\partial A}{\partial x}=y=40$
$\frac{\partial A}{\partial y}=x=100$
The differential or the error in the area is

$$
d A=\frac{\partial A}{\partial x} d x+\frac{\partial A}{\partial y} d y
$$

$$
=40(0.5)+(100)(0.15)
$$

$=35$ square inchs.
Example 2
Using differential estimate $\sqrt[3]{67} \sqrt{10} \sqrt[5]{31}$

Solution:

$$
\begin{aligned}
& \sqrt[3]{67} \sqrt{10} \sqrt[5]{31}=\sqrt[3]{64+3} \sqrt{9+1} \sqrt[5]{32-1} \\
&=\sqrt[3]{x+d x} \sqrt{y+d y} \sqrt[5]{z+d z} \\
& x=64, d x=3 ; y=9, d y=1, z=32, d z=-1
\end{aligned} \rightarrow(i)
$$

Consider a function f

$$
f(x, y, z)=\sqrt[3]{x} \sqrt{y} \sqrt[5]{z}=x^{1 / 3} y^{1 / 2} z^{1 / 5} \quad \rightarrow(i i)
$$

$$
\frac{\partial f}{\partial x}=\frac{y^{1 / 2} z^{1 / 5}}{3 x^{2 / 3}}=\frac{9^{1 / 2} 32^{1 / 5}}{3(64)^{2 / 3}}=\frac{1}{8}
$$

$$
\frac{\partial f}{\partial y}=\frac{x^{1 / 3} z^{1 / 5}}{2 y^{1 / 2}}=\frac{(64)^{1 / 3}(32)^{1 / 5}}{2(9)^{1 / 2}}=\frac{4}{3}
$$

$$
\frac{\partial f}{\partial z}=\frac{x^{1 / 3} y^{1 / 2}}{5 z^{4 / 5}}=\frac{(64)^{1 / 3}(9)^{1 / 2}}{5(32)^{4 / 5}}=\frac{3}{20}
$$

The differential $d f$ is

$$
\begin{aligned}
d f & =\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z \\
& =\frac{1}{8}(3)+\frac{4}{3}(1)+\frac{3}{20}(-1) \\
& =\frac{3}{8}+\frac{4}{3}-\frac{3}{20}=\frac{187}{120}
\end{aligned}
$$

Since
$f(x, y, z)=\sqrt[3]{x} \sqrt{y} \sqrt[5]{z}=\sqrt[3]{64} \sqrt{9} \sqrt[5]{32}=24$
Hence
$\sqrt[3]{67} \sqrt{10} \sqrt[5]{31}=f+d f=24+\frac{187}{120}$

$$
=\frac{3067}{120}=25.558
$$

Exercise C-6

Use differential to estimate the following:
(1) $\sqrt[3]{9} \cdot \sqrt[5]{30}$
(2) $\sqrt[4]{80} \cdot \sqrt[3]{62} \cdot \sqrt{5}$
(3) $\ln \left(3.1^{3}+7.2^{2}-0.8^{4}\right)$

Use differential to estimate maximum error that can arise from calculating.
(4) $f(x, y)=x y^{3}-8 x^{2} y^{2}$

$$
\text { if } x=1 \pm 0.01 \text { and } y=8 \pm 0.2
$$

(5) $f(x, y)=3 x^{2} y-5 x y$

$$
\text { if } x=1 \pm 0.01 \text { and } y=8 \pm 0.2
$$

(6) Radius of a circular cone is increased by 0.5% and the height is decreased by 0.1% find the percentage change in the volume.
(7) A quantity z is to be calculated from the formula $z=(x-y) /(x+y)$, assuming that $x=25$ with a possible error 0.5 and $y=50$ with a possible error 0.2 , using differential calculate error in z.
(8) Suppose that the height of a right circular cylinder changes from 10 to 10.4 and radius changes 5 to 5.2 estimate the change in volume of the cylinder.

DIFFERENTIATION AND DIFFERENTIAL

Geometric significance of Δz and $d z$:
$z=f(x, y)$ is a function of the surface and $g(x, y)$ is the function of the tangent plane on the surface at the point $(a, b, f(a, b))$, as shown in the figure. The values of f and g are same at (a, b) that is $f(a, b)=g(a, b)$.
(a, b) and $(a+\Delta x, b+\Delta y)$ are two points on the $x y$-plane and Δx and Δy are two small real numbers, so that
$(a, b, f(a, b))$ and $(a+\Delta x, b+\Delta y, f(a+\Delta x, b+\Delta y))$ are two points on the surface $f(x, y)$.
Δz is the difference between two values
$f(a+\Delta x, b+\Delta y)$ and $f(a, b)$ on the surface $f(x, y)$.
$\Delta z=f(a+\Delta x, b+\Delta y)-f(a, b) \rightarrow(1)$
It can be written as

$\Delta z=\Delta x \cdot f_{x}(a, b)+\Delta y \cdot f_{y}(a, b)+\Delta x \cdot \varepsilon_{1}+\Delta x \cdot \varepsilon_{2} \rightarrow(2)$
$\varepsilon_{1}, \varepsilon_{2} \rightarrow 0$ as $\Delta x, \Delta y \rightarrow 0$
According to equation (1) and equation (2)
$\Delta z=f(a+\Delta x, b+\Delta y)-f(a, b)$

$$
=\Delta x \cdot f_{x}(a, b)+\Delta y \cdot f_{y}(a, b)+\Delta x \cdot \varepsilon_{1}+\Delta x \cdot \varepsilon_{2}
$$

Differential $d z$ is the difference between two values $g(a+\Delta x, b+\Delta y)$ and $g(a, b)$ where $(a, b, g,(a, b))$ and $(a+\Delta x, b+\Delta y, g(a+\Delta x, b+\Delta y))$ are the two points on the tangent plane.

$$
d z=g(a+\Delta x, b+\Delta y)-g(a, b) \rightarrow(3)
$$

It can be written as

$$
d z=\Delta x \cdot f_{x}(a, b)+\Delta y \cdot f_{y}(a, b) \rightarrow(4)
$$

According to equations (3) and (4)

$$
\begin{aligned}
d z & =g(a+\Delta x, b+\Delta y)-g(a, b) \\
& =\Delta x \cdot f_{x}(a, b)+\Delta y \cdot f_{y}(a, b)
\end{aligned}
$$

So Δz is approximately equal to differential $d z(i . e \Delta z \cong d z)$. The accuracy of this approximation increases as Δx and Δy become smaller.

Example:
The function f of a surface is defined by
$z=f(x, y)=9-\sqrt{9-(x-1)^{2}-(y-2)^{2}}$
If $x+\Delta x=2+0.5$ and $y+\Delta y=3+0.7$,then
(a) Find Δz
(b) Find differential $d z$
and also show that if $g(x, y)$ be the function of the tangent
plane on the surface $f(x, y)$ then
$g(x+\Delta x, y+\Delta y)-g(x, y)=d z$
Solution:
$f(x, y)=9-\sqrt{9-(x-1)^{2}-(y-2)^{2}}$
$f(x, y)=9-\sqrt{-x^{2}-y^{2}+2 x+4 y+4} \rightarrow(1)$
For $x=2$ and $y=3$
$f(2,3)=9-\sqrt{-(2)^{2}-(3)^{2}+2(2)+4(3)+4}$
$f(2,3)=9-\sqrt{7}$
By equation (1)
$f(x+\Delta x, y+\Delta y)$
$=9-\sqrt{-(x+\Delta x)^{2}-(y+\Delta y)^{2}+2(x+\Delta x)+4(y+\Delta y)+4}$
$f(2.5,3.7)=9-\sqrt{-(2.5)^{2}-(3.7)^{2}+2(2.5)+4(3.7)+4}$
$f(2.5,3.7)=9-\sqrt{3.86}$
(a) Δz :

$$
\begin{aligned}
\Delta z & =f(x+\Delta x, y+\Delta y)-f(x, y) \\
& =f(2.5,3.7)-f(2,3) \\
& =(9-\sqrt{3.86}-(9-\sqrt{7})) \\
& =\sqrt{7}-\sqrt{3.86}=0.68 \\
\text { (b) (i) } \quad \mathrm{d} z= & \Delta x . f_{x}(x, y)+\Delta y \cdot f_{y}(x, y)
\end{aligned}
$$

$f(x, y)=9-\sqrt{-x^{2}-y^{2}+2 x+4 y+4}$
Partial derivatives with respect to x and y.
$f_{x}(x, y)=\frac{x-1}{\sqrt{-x^{2}-y^{2}+2 x+4 y+4}}$
$f_{y}(x, y)=\frac{y-2}{\sqrt{-x^{2}-y^{2}+2 x+4 y+4}}$
when $x=2$ and $y=3$.
$f_{x}(2,3)=1 / \sqrt{7}$ and $f_{y}(2,3)=1 / \sqrt{7}$

Differential $\boldsymbol{d} \boldsymbol{f}$:

$$
\begin{aligned}
d f & =\Delta x \cdot f_{x}(2,3)+\Delta y \cdot f_{y}(2,3) \\
& =(0.5) \cdot 1 / \sqrt{7}+(0.7) 1 / \sqrt{7} \\
& =(6 / 5) \sqrt{7}=0.45
\end{aligned}
$$

(ii) Let g be the function of tangent plane on the surface $f(x, y)$ at the point $(2,3)$
$g(x, y)=\left(x-x_{o}\right) f_{x}\left(x_{o}, y_{o}\right)+\left(y-y_{o}\right) f_{y}\left(x_{o}, y_{o}\right)$

$$
+f\left(x_{0}, y_{o}\right)
$$

$$
g(x, y)=(x-2) f_{x}(2,3)+(y-3) f_{y}(2,3)+f(2,3)
$$

$$
=(x-2)(1 / \sqrt{7})+(y-3)(1 / \sqrt{7})+9-\sqrt{7}
$$

$$
=1 / \sqrt{7}(x+y+9 \sqrt{7}-12)
$$

when $x=2$ and $y=3$

$$
g(2,3)=1 / \sqrt{7}(2+3+9 \sqrt{7}-12)
$$

$$
=\frac{9 \sqrt{7}-7}{\sqrt{7}}
$$

$$
g(x+\Delta x, y+\Delta y)=1 / \sqrt{7}\{(x+\Delta x)+(y+\Delta y)+9 \sqrt{7}-12\}
$$

$$
g(2.5,3.7)=1 / \sqrt{7}\{2.5+3.7+9 \sqrt{7}-12\}
$$

$$
=\frac{9 \sqrt{7}-5.8}{\sqrt{7}}
$$

Differential $d z$:

$$
g(x+\Delta x, y+\Delta y)-g(x, y)
$$

$$
=g(2.5,3.7)-g(2,3)
$$

$$
=\frac{9 \sqrt{7}-5.8}{\sqrt{7}}-\frac{9 \sqrt{7}-7}{\sqrt{7}}
$$

Exercise C-7

For the following function f
(a) Find Δf
(b) Find differential $d f$
and also show that if $g(x, y)$ be the function of the tangent plane on the surface $f(x, y)$ then

$$
g(x+\Delta x, y+\Delta y)-g(x, y)=d z
$$

(1) $f(x, y)=3 x^{2}+y^{2}$

$$
x+\Delta x=3+0.05, y+\Delta y=5+0.1
$$

(2)

$$
f(x, y)=\frac{x y}{\sqrt{x^{2}+y^{2}+x y}}
$$

$x+\Delta x=2-0.01, y+\Delta y=4+0.05$
(3) $f(x, y)=x^{2}-y^{2}+3 x y$
$x+\Delta x=2-0.5, y+\Delta y=3-0.01$
(4) $f(x, y)=x^{2}+2 y^{2}$
$x+\Delta x=8+0.2, y+\Delta y=7-0.1$


```
AUTMHIOR M . MEAQSOOD A돈 ASSISTANT PROFESSOR OF MATHEMATICS
```

FREE DOWNLOAD ALL BOOKS AND CD ON MATHEMATICS
BY
M. MAQSOOD ALI FROM WEBSITE
www.mathbunch.com

Mr Mr
ASSISTANT PROFESSOR OF MATHEMATICS

ALL BOOKS AND CD ON MATHEMAHICS
BY
M. MAQSOODALI

FROM WEBSITE
www.mathbunch.com

