CALCULUS NUMERICAL ANALYSIS Vol: 1)

PARTIAL DERIVATIVES

Partial derivatives of a function of several variables are ordinary derivatives with respect to a variable, holding all other variables constant.

If $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is a function of n variables then the partial derivative of f with respect to x_{1} can be defined as

$$
\frac{\partial f}{\partial x_{1}}=\lim _{\Delta x_{1} \rightarrow 0} \frac{f\left(x_{1}+\Delta x_{1}, x_{2}, \cdots, x_{n}\right)=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)}{\Delta x_{1}}
$$

Similarly we can define $\frac{\partial f}{\partial x_{2}}, \frac{\partial f}{\partial x_{3}}, \cdots, \frac{\partial f}{\partial x_{n}}$
If $f(x, y, z)$ is a function of three variables. We can obtain a function of one variable by assigning fixed values to the other two variables. If y and z are regarded as fixed the derivative of f with respect to x is called partial derivative of f w.r.t x. This partial derivative is denoted by $\partial f / \partial x$ or $f_{x}(x, y)$ similar notations are used for the partial derivatives with respect to y and z.

If y and z are fixed values and x is a variable then the derivative of f can be defined as

$$
f_{x}(x, y, z)=\frac{\partial f}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y, z)-f(x, y, z)}{\Delta x}
$$

If x and z are fixed values and y is a variable then the derivative of f w.r.t. y is

$$
f_{y}(x, y, z)=\frac{\partial f}{\partial y}=\lim _{\Delta y \rightarrow 0} \frac{f(x, y+\Delta y, z)-f(x, y, z)}{\Delta y}
$$

If x and y are fixed values and z is a variable then the derivative of f w.r.t.z is

$$
f_{z}(x, y, z)=\frac{\partial f}{\partial z}=\lim _{\Delta z \rightarrow 0} \frac{f(x, y, z+\Delta z)-f(x, y, z)}{\Delta z}
$$

GEOMETRIC SIGNIFICANCE OF PARTIAL DERIVATIVES:

1- Three Dimensional Coordinate System:

Consider a three dimensional coordinate system as shown in figure.
2- Surface $f(x, y)$:
The graph of the function $z=f(x, y)$ is a surface in a three dimensional coordinates system.
3- Planes $\boldsymbol{y}=\boldsymbol{b}$ and $\boldsymbol{x}=\boldsymbol{a}$:
Consider a point (a, b) on the $x y$-plans. The plan $y=b$ is parallel to $x z$-plane and the plane $x=a$ is parallel to $y z$-plane as shown in the figures.
4- Curves $f(x, b)$ and $f(a, y)$ on the surface:
The intersection of the surface $f(x, y)$ and the plane $y=b$ forms a curve $f(x, b)$.

Similarly the intersection of the surface $f(x, y)$ and the plane $x=a$ forms a curve $f(a, y)$ as shown in the figure.
5- Partial Derivatives $\boldsymbol{f}_{\boldsymbol{x}}(\boldsymbol{a}, \boldsymbol{b})$ and $\boldsymbol{f}_{\boldsymbol{y}}(\boldsymbol{a}, \boldsymbol{b})$:
Partial derivative $f_{x}(a, b)$ is the slope of the tangent line to the curve $f(x, b)$ at the point $\left(a, b, f(a, b)\right.$. So that $f_{x}(a, b)$ is the slope of the line parallel to $x z$-plane and tangent to the surface $z=f(x, y)$ at the point $(a, b, f(a, b))$, as shown in the
figure C-17.
Example-1:
Find the derivative of the following function by first principle

$$
f(x, y)=x^{2} y+2 y^{2}
$$

$$
\begin{aligned}
& \text { Solution: } \\
& \frac{\partial}{\partial x} f(x, y)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y)-f(x, y)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{2} y+2 y^{2}-\left(x^{2} y+2 y^{2}\right)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{x^{2} y+2 x y \Delta x+(\Delta x)^{2} y+2 y^{2}-x^{2} y-2 y^{2}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{(2 x y+\Delta x y) \Delta x}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0}(2 x y+\Delta x y)=2 x y \\
& \frac{\partial}{\partial y} f(x, y)=\lim _{\Delta y \rightarrow 0} \frac{f(x, y+\Delta y)-f(x, y)}{\Delta y} \\
& =\lim _{\Delta y \rightarrow 0} \frac{\left[x^{2}(y+\Delta y)+2(y+\Delta y)^{2}\right]-\left(x^{2} y+2 y^{2}\right)}{\Delta y} \\
& =\lim _{\Delta y \rightarrow 0} \frac{x^{2} y+x^{2} \Delta y+2 y^{2}+4 y \Delta y+(\Delta y)^{2}-x^{2} y-2 y^{2}}{\Delta y} \\
& =\lim _{\Delta y \rightarrow 0} \frac{\left.x^{2}+4 y+\Delta y\right) \Delta y}{\Delta y} \\
& =\lim _{\Delta y \rightarrow 0}\left(x^{2}+4 y+\Delta y\right) \\
& =x^{2}+4 y
\end{aligned}
$$

CHAIN RULE

(a) If $F=f(u, v)$ and u and v are functions of two variables $u=u(x, y)$ and $v=v(x, y)$ then

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=\frac{\partial F}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial F}{\partial v} \cdot \frac{\partial v}{\partial x} \\
& \frac{\partial F}{\partial y}=\frac{\partial F}{\partial u} \cdot \frac{\partial u}{\partial y}+\frac{\partial F}{\partial v} \cdot \frac{\partial v}{\partial y}
\end{aligned}
$$

(b) If $F=f(u, v, w)$ and u, v and w are functions of three variables $u=u(x, y, z)$ and $v=v(x, y, z)$ and
$w=w(x, y, z)$, then

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=\frac{\partial F}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial F}{\partial v} \cdot \frac{\partial v}{\partial x}+\frac{\partial F}{\partial w} \cdot \frac{\partial w}{\partial x} \\
& \frac{\partial F}{\partial y}=\frac{\partial F}{\partial u} \cdot \frac{\partial u}{\partial y}+\frac{\partial F}{\partial v} \cdot \frac{\partial v}{\partial y}+\frac{\partial F}{\partial w} \cdot \frac{\partial w}{\partial y} \\
& \frac{\partial F}{\partial z}=\frac{\partial F}{\partial u} \cdot \frac{\partial u}{\partial z}+\frac{\partial F}{\partial v} \cdot \frac{\partial v}{\partial z}+\frac{\partial F}{\partial w} \cdot \frac{\partial w}{\partial z}
\end{aligned}
$$

Example:

If $F=f(u, v)=2 u^{3}+3 v$ and $u=u(x, y)=5 x^{2}+10 y$
and $v=v(x, y)=x^{2} y$ then find $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial y}$.

Solution:

$$
\begin{array}{ll}
\begin{array}{ll}
\frac{\partial F}{\partial u}=6 u^{2}=6\left(5 x^{2}+10 y\right)^{2}, & \frac{\partial F}{\partial v}=3 \\
\frac{\partial u}{\partial x} & =10 x
\end{array}, & \frac{\partial u}{\partial y}=10 \\
\frac{\partial v}{\partial x}=2 x y & , \\
\text { The chain rule }
\end{array}
$$

$$
\begin{aligned}
\frac{\partial F}{\partial x} & =\frac{\partial F}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial F}{\partial v} \cdot \frac{\partial v}{\partial x} \\
& =6\left(5 x^{2}+10 y\right)^{2} \cdot 10 x+3(2 x y) \\
& =60 x\left(5 x^{2}+10 y\right)^{2}+6 x y \\
\frac{\partial F}{\partial y} & =\frac{\partial F}{\partial u} \cdot \frac{\partial u}{\partial y}+\frac{\partial F}{\partial v} \cdot \frac{\partial v}{\partial y} \\
& =6\left(5 x^{2}+10 y\right)^{2} \cdot 10+3\left(x^{2}\right) \\
& =60\left(5 x^{2}+10 y\right)^{2}+3 x^{2}
\end{aligned}
$$

Exercise C-3:

Find the partial derivatives of the following functions by first principle.
(1) $Z=f(x, y)=2 x^{2}+x y$
(2) $\quad f(x, y)=\frac{x}{y}$
(3) $f(x, y)=y \sin x$
(4) Find the partial derivatives for the following function at $(0,0,0)$

$$
f(x, y, z)=\frac{x y z}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

Such that $(x, y, z) \neq(0,0,0)$ and $f(0,0,0)=0$
(5) If $F=f(x, y)=y \sin x+e^{x y}-x^{2} y^{2}$,
then find

$$
\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial^{2} F}{\partial x \partial y}, \frac{\partial^{2} F}{\partial y \partial x} \cdot \frac{\partial^{2} F}{\partial x^{2}}, \frac{\partial^{2} F}{\partial y^{2}}
$$

(6) If $F=f(x, y)=y^{3} \tan x+\tan ^{-1}\left(\frac{y}{x}\right)+3 x y$,
then find

$$
\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial^{2} F}{\partial x \partial y}, \frac{\partial^{2} F}{\partial y \partial x} \cdot \frac{\partial^{2} F}{\partial x^{2}}, \frac{\partial^{2} F}{\partial y^{2}}
$$

(7) If $F=f(x, y)=3 x^{2} y+x^{2} y z \tan (x z)$, then find
$\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z} \frac{\partial^{2} F}{\partial x \partial y}, \frac{\partial^{2} F}{\partial x \partial z}, \frac{\partial^{2} F}{\partial y \partial z}, \frac{\partial^{2} F}{\partial y^{2}}, \frac{\partial^{2} F}{\partial z^{2}}, \frac{\partial^{3} F}{\partial z^{3}}$
(8) If $f(x, y)=6 x z^{4}+5 y^{3} z+e^{x y z}$, then find

$$
\frac{\partial^{3} F}{\partial x^{3}}, \frac{\partial^{3} F}{\partial y^{3}}, \frac{\partial^{3} F}{\partial z^{3}}
$$

(9) If $F=f(u, v, w)=\operatorname{In}\left(u^{2}-3 v+w^{3}\right)$ where

$$
u=\sqrt{x}+3 y, v=y \ln x+y^{2}, w=2 x
$$

then find

$$
\left[\frac{\partial F}{\partial x}\right]_{(1,3)} \text { and }\left[\frac{\partial F}{\partial y}\right]_{(1,3)}
$$

(10) If $F=f(u, v, w)=u v-v w+u w$ where
$u=3 x+y, v=x y z+5, w=6+z^{2}$, then find
$\left[\frac{\partial F}{\partial x}\right]_{(1,1,2)}\left[\frac{\partial F}{\partial y}\right]_{(1,1,2)}$ and $\left[\frac{\partial F}{\partial z}\right]_{(1,1,2)}$
(11) If $F=f(u, v, w)=\frac{u+v}{w}$, where $u=\ln x+y+z \quad, \quad v=x z+y, \quad w=y^{2}+6 y z$, then find

$$
\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \text { and } \frac{\partial F}{\partial z} \text { at }(1,2,-1)
$$

(12) If f is a function of polar coordinates r and θ where $x=r \cos \theta$ and $=r \sin \theta$,
then show that

$$
\left[\frac{\partial F}{\partial r}\right]^{2}+\frac{1}{r^{2}}\left[\frac{\partial F}{\partial \theta}\right]^{2}=\left[\frac{\partial F}{\partial x}\right]^{2}+\left[\frac{\partial F}{\partial y}\right]^{2}
$$

AUTMETOR
MI.
MEAQSOOD
AITI
ASSISTANT
PROFESSOR OF
MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON
MATHEMATICS
BY
M. MAQSOOD ALI

FROM WEBSITE
www.mathbunch.com

TANGENT PALNE

FUNCTION OF THE TANGENT PLANE
The graph of the function $f(x, y)$ is a surface in a three dimensional coordinate system.
$g(x, y)$ is the function of the tangent plane at the point (x_{0}, y_{0}, z_{o}) on the surface $f(x, y)$. $g(x, y)=\left(x-x_{o}\right) f_{x}\left(x_{o}, y_{o}\right)+\left(y-y_{o}\right) f_{y}\left(x_{o}, y_{o}\right)+f\left(x_{o}, y_{o}\right)$

EQUATION OF THE TANGENT PLANE :
(i) $z=f(x, y)$ is an equation of the surface, the equation of the tangent plane at the point $\left(x_{0}, y_{0}, z_{0}\right)$ is given below.
$\left(x-x_{o}\right) f_{x}\left(x_{o}, y_{o}\right)+\left(y-y_{o}\right) f_{y}\left(x_{o}, y_{o}\right)-\left(z-z_{o}\right)=0$
(ii) $F(x, y, z)=0$ is the implicit equation of the surface, the equation of the tangent plane at the point $\left(x_{0}, y_{o}, z_{o}\right)$ on the surface is

$$
\begin{array}{r}
\left(x-x_{o}\right) f_{x}\left(x_{o}, y_{o}, z_{o}\right)+\left(y-y_{o}\right) f_{y}\left(x_{o}, y_{o}, z_{o}\right) \\
+\left(z-z_{o}\right) f_{z}\left(x_{o}, y_{o}, z_{o}\right)=0
\end{array}
$$

Example 1:
If f is the function of a surface such that $f(x, y)=x^{2}+y^{2}$,
then find the function of the tangent plane at $(0,0,0)$.

Solution:

$$
f(x, y)=x^{2}+y^{2}
$$

$f_{x}(0,0)=0$ and $f_{y}(0,0)=0$
$g(x, y)$ is the function of the tangent plane at $(0,0,0)$.

$$
g(x, y)=(x-0) f_{x}(0,0)+(y-0) f_{y}(0,0)+f(0,0)
$$

$$
g(x, y)=0
$$

Example 2 :
$z=12-3 x^{2}$ is the equation of the surface. Find the equation of the tangent plane at $(1,6,9)$.
Solution:

$$
\begin{aligned}
& \mathrm{z}=f(x, y)=12-3 x^{2} \quad \rightarrow(1) \\
& f_{x}(1,6)=-6 \quad f_{y}(1,6)=0 \\
& \text { The equation of the tangent plane. } \\
& \qquad \begin{array}{l}
\left(x-x_{0}\right) f_{x}\left(x_{o}, y_{o}\right)+\left(y-y_{o}\right) f_{y}\left(x_{o}, y_{o}\right)-\left(z-z_{o}\right)=0 \\
(x-1)(-6)+0-(z-9)=0 \\
6 x+z-15=0 \quad \rightarrow(2)
\end{array}
\end{aligned}
$$

Equation (2) is the equation of the tangent plane at (1,6,9).

Example 3:
$x^{2}+x z^{2}-y z=0$ is the equation of the surface, find the equation of the tangent plane at (1,2,1).

Solution:

$\begin{array}{lc}f(x, y, z) & =x^{2}+x z^{2}-y z=0 \\ f_{x}(x, y, z) & =2 x+z^{2} \quad \Rightarrow\end{array} \quad f_{x}(1,2,1)=3$
$f_{y}(x, y, z)=-z \quad \Rightarrow \quad f_{y}(1,2,1)=-1$
$f_{z}(x, y, z)=2 x z-y \quad \Rightarrow \quad f_{z}(1,2,1)=0$
The equation of the tangent plane

$$
\begin{gathered}
(x-1) f_{x}(1,2,1)+(y-2) f_{y}(1,2,1)+(z-1) f_{z}(1,2,1)=0 \\
(x-1)(3)+(y-2)(-1)+(z-1)(0)=0 \\
3 x-y-1=0
\end{gathered}
$$

EXERCISE C-4

Find the function of the tangent plane for the following at the indicated point.
(1) $f(x, y)=3 x y+x^{2}$
$(3,1,19)$
(2) $f(x, y)=x^{2}+y^{2}+x y$
$(1,1,3)$
(3) $\quad f(x, y)=x^{3}+x y^{2}+y^{3}$
$(1,1,3)$

Find the equation of the tangent plane for the following at the indicated point.
(4) $\mathrm{z}=x^{2}+y^{2}$
$(1,2,5)$
(5) $\mathrm{z}=5 x^{3}+3 y$
(6) $z=x y$
$(1,1,8)$
Find the equation of the tangent plane for the following
indicated point.
(7) $x y+x^{2} z+3 x y z^{2}=0 \quad(2,0,0)$
(8) $x^{2}+x y^{2}+x y+z^{2}=0 \quad(1,1, \sqrt{3})$

IM. Mreqsoon frr
ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON MATHEMATIGS
BY
M. MAQSOOD ALI

FROM WEBSITE

www.mathbunch.com

