CALCULUS NUMERICAL ANALYSIS Vol: 1)

CONTINUITY

Def-1: A function $f(x, y)$ is continuous at (a, b) if the following conditions are satisfied:
(i) $\quad f(x, y)$ must be defined at $(x, y)=(a, b) \in D_{f}$
(ii) $\underset{(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{a}, \mathrm{b})}{\operatorname{Lim}} f(x, y)$ must exist
(iii) $\underset{(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{a}, \mathrm{b})}{\operatorname{Lim}} f(x, y)=f(a, b)$

Def-2: A function $f(x, y)$ is continuous at $(a, b) \in D_{f}$ if for a given $\varepsilon>0$, there exists a $\delta>0$, such that

$$
|f(x, y)-f(a, b)|<\varepsilon
$$

when

$$
|x-a|<\delta,|y-b|<\delta
$$

Figure C-15

Example 1:
Discuss the continuity for the following function

$$
\begin{aligned}
& \text { (i) } f(x, y)= \begin{cases}x^{3}+2 y^{2}+3 & \text { for }(x, y) \neq(0,0) \\
0 & \text { for }(x, y)=(0,0)\end{cases} \\
& \text { at }(0,0) .
\end{aligned}
$$

Solution:

(i)

$$
f(0,0)=0
$$

(ii) $\underset{\substack{x \rightarrow 0 \\ y \rightarrow 0}}{\operatorname{Lim}} f(x, y)=\underset{\substack{x \rightarrow 0 \\ y \rightarrow 0}}{\operatorname{Lim}}\left(x^{3}+2 y^{2}+3\right)$

$$
=3
$$

(iii)

$$
\operatorname{Lim}_{\substack{x \rightarrow 0 \\ y \rightarrow 0}} f(x, y) \neq f(0,0)
$$

Hence f is discontinuous at $(0,0)$.
Example 2:
Discuss the continuity for the following function

$$
f(x, y)= \begin{cases}x^{2}-3 y & \text { for }(x, y) \neq(3,2) \\ 3 & \text { for }(x, y)=(3,2)\end{cases}
$$

at $(3,2)$.

Solution:

(i)

$$
f(3,2)=3
$$

(ii)

$$
\begin{gathered}
\operatorname{Lim}_{(x, y) \rightarrow(3,2)} f(x, y)=\underset{(x, y) \rightarrow(3,2)}{\operatorname{Lim}}\left(x^{2}-3 y\right) \\
=9-6=3
\end{gathered}
$$

(iii) $\quad \operatorname{Lim}_{(x, y) \rightarrow(3,2)} f(x, y)=f(3,2)$
f is continuous at $(3,2)$.

Example 3:
Discuss the continuity for the following function

$$
f(x, y)=\frac{x^{2}+y^{2}}{x^{2}-y^{2}}
$$

$(x, y) \neq(0,0), f(0,0)=0$ at $(0,0)$

Solution:

(i)

$$
f(0,0)=0
$$

(ii)

$$
\begin{gathered}
\operatorname{Lim}_{x \rightarrow 0} \operatorname{Lim}_{y \rightarrow 0} f(x, y)=\operatorname{Lim}_{x \rightarrow 0} \operatorname{Lim}_{y \rightarrow 0} \frac{x^{2}+y^{2}}{x^{2}-y^{2}} \\
=\operatorname{Lim}_{x \rightarrow 0} \frac{x^{2}}{x^{2}}=1
\end{gathered}
$$

$$
\begin{gathered}
\operatorname{Lim}_{y \rightarrow 0} \operatorname{Lim}_{x \rightarrow 0} f(x, y)=\operatorname{Lim}_{y \rightarrow 0} \operatorname{Lim}_{x \rightarrow 0} \frac{x^{2}+y^{2}}{x^{2}-y^{2}} \\
=\operatorname{Lim}_{y \rightarrow 0} \frac{y^{2}}{-y^{2}}=-1
\end{gathered}
$$

$$
\operatorname{Lim}_{x \rightarrow 0} \operatorname{Lim}_{y \rightarrow 0} f(x, y) \neq \operatorname{Lim}_{y \rightarrow 0}^{\operatorname{Lim}} \operatorname{Lim}_{x \rightarrow 0} f(x, y)
$$

$\operatorname{Lim}_{(x, y) \rightarrow(0,0)} f(x, y)$ does not exit.
Hence f is discontinuous at $(0,0)$.
Another Method:

$$
f(x, y)=\frac{x^{2}+y^{2}}{x^{2}-y^{2}}
$$

Suppose that for $\varepsilon>0$

$$
\begin{aligned}
x=\varepsilon \cos \theta & \quad y=\varepsilon \sin \theta \\
|f(x, y)-f(0,0)| & =\left|\frac{x^{2}+y^{2}}{x^{2}-y^{2}}-0\right| \\
& =\left|\frac{x^{2}+y^{2}}{x^{2}-y^{2}}\right| \\
& =\left|\frac{\varepsilon^{2} \cos ^{2} \theta+\varepsilon^{2} \sin ^{2} \theta}{\varepsilon^{2} \cos ^{2} \theta-\varepsilon^{2} \sin ^{2} \theta}\right| \\
& =\left|\frac{\varepsilon^{2}}{\varepsilon^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}\right| \\
& =\left|\frac{1}{\cos 2 \theta}\right| \nless \varepsilon
\end{aligned}
$$

Hence $f(x, y)$ is discontinuous at $(0,0)$
Example 2:
Discuss the continuity for the following function
$f(x, y)=\frac{x y}{x^{2}+y^{2}}$ at $(0,0)$ such that $f(0,0)=0$.

Solution:

Suppose that
$x=\varepsilon \cos \theta$ and $y=\varepsilon \sin \theta$

$$
\begin{aligned}
|f(x, y)-f(0,0)| & =\left|\frac{x y}{\sqrt{x^{2}+y^{2}}}-0\right| \\
& =\left|\frac{x y}{\sqrt{x^{2}+y^{2}}}\right| \\
& =\left|\frac{\varepsilon \cos \theta \cdot \varepsilon \sin \varepsilon \theta}{\sqrt{\varepsilon^{2} \cos ^{2} \theta+\varepsilon^{2} \sin ^{2} \theta}}\right| \\
& =\left|\frac{\varepsilon^{2} \cos \theta \sin \theta}{\varepsilon^{2} \sqrt{\cos ^{2} \theta+\sin ^{2} \theta}}\right| \\
& =|\varepsilon \cos \theta \sin \theta| \\
& =\varepsilon .|\cos \theta| \cdot|\sin \theta|<\varepsilon
\end{aligned}
$$

because $|\cos \theta| \leq 1$ and $|\sin \theta| \leq 1$
Hence $f(x, y)$ is continuous at $(0,0)$.

Example 3:

Discuss the continuity of the following functions at $(0,0)$.

$$
\begin{gathered}
f(x, y)=\frac{x^{4} y^{4}}{\left(x^{4}+y^{2}\right)^{3}} \\
(x, y) \neq(0,0) ; f(0,0)=0
\end{gathered}
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y) & =\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} \frac{x^{4} y^{4}}{\left(x^{4}+y^{2}\right)^{3}} \\
& =\lim _{y \rightarrow 0} \frac{0}{y^{6}}=0 \\
\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y) & =\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} \frac{x^{4} y^{4}}{\left(x^{4}+y^{2}\right)^{3}} \\
& =\lim _{y \rightarrow 0} \frac{0}{x^{8}}=0
\end{aligned}
$$

Let $y=g_{1}(x)=m x$

$$
\begin{gathered}
\lim _{x \rightarrow 0} f\left(x, g_{1}(x)\right)=\lim _{x \rightarrow 0} \frac{m^{4} x^{8}}{\left(x^{4}+m^{2} x^{2}\right)^{3}} \\
=\lim _{x \rightarrow 0} \frac{m^{4} x^{2}}{\left(x^{2} m^{2}\right)^{3}}=0
\end{gathered}
$$

Let $y=g_{2}(x)=x^{2}$

$$
\begin{aligned}
\lim _{x \rightarrow 0} f\left(x, g_{2}(x)\right) & =\lim _{x \rightarrow 0} \frac{x^{4} \cdot x^{8}}{\left(x^{4}+x^{4}\right)^{3}} \\
& =\lim _{x \rightarrow 0} \frac{x^{12}}{8 x^{12}} \\
& =1 / 8 \neq 0
\end{aligned}
$$

Since $\lim _{x \rightarrow 0} f\left(x, g_{1}(x)\right) \neq \lim _{x \rightarrow 0} f\left(x, g_{2}(x)\right)$
Hence f is discontinuous at $(0,0)$.
Example 4:
Discuss the continuity of the following function at $(2,3)$.

$$
\begin{aligned}
& f(x, y)=\frac{(x-2)^{2}+(y-3)^{2}}{[(x-2)-(y-3)]^{2}} \\
& f(2,3)=0
\end{aligned}
$$

$(x, y) \neq(2,3)$

Solution:

$$
\lim _{x \rightarrow 2} \lim _{y \rightarrow 3} f(x, y)=1=\lim _{y \rightarrow 3} \lim _{x \rightarrow 2} f(x, y)
$$

Let $y-3=m(x-2)$ or $y=m(x-2)+3$

$$
\begin{aligned}
\lim _{x \rightarrow 2} f(x, g(x))= & \lim _{x \rightarrow 2} \frac{(x-2)^{2}+m^{2}(x-2)^{2}}{[(x-2)-m(x-2)]^{2}} \\
& =\frac{1+m^{2}}{(1-m)^{2}}
\end{aligned}
$$

It depends on m.
Hence f is discontinuous at $(2,3)$.

Example 5:

Discuss the continuity of the following function $f(x, y)=|x|+|y|$ at $\quad(a, b)$.

Solution:

$$
\begin{aligned}
|f(x, y)-f(a, b)| & =|(|x|+|y|)-(|a|+|b|)| \\
& =(|x|-|a|)+(|y|-|b|) \\
& \leq|(|x|-|a|)|+|(|y|-|b|)| \\
& \leq|x-a|+|y-b|
\end{aligned}
$$

If $|x-a|<\delta=\varepsilon / 2$ and $|y-b|<\delta=\varepsilon / 2$, then
$|f(x, y)-f(a, b)|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}$
$|f(x, y)-f(a, b)|<\varepsilon$
Hence $f(x, y)$ is continuous at (a, b)
Theorem C-2:
If two functions $f(x, y)$ and $g(x, y)$ are both continuous at (a, b), so are the sum and product functions
$f(x, y)+g(x, y)$ and $f(x, y) g(x, y)$ and so also is the quotient
function $f(x, y) / g(x, y)$ provided that $g(a, b) \neq 0$.

Proof:

Since $f(x, y)$ and $g(x, y)$ are both continuous at (a, b).
$\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$
and
$\lim _{(x, y) \rightarrow(a, b)} g(x, y)=g(a, b)$
(i) Let $\emptyset[f(x, y), g(x, y)]=f(x, y)+g(x, y)$
$\lim _{\substack{x \rightarrow a \\ y \rightarrow b}} \emptyset[f(x, y), g(x, y)]=\lim _{\substack{x \rightarrow a \\ y \rightarrow b}}[f(x, y)+g(x, y)]$
$\lim _{x \rightarrow a} f(x, y)+\lim _{x \rightarrow a} g(x, y)$
${ }^{y \rightarrow b}(a, b)+\quad y \rightarrow b$
$f(a, b)+g(a, b)$
$\emptyset[f(a, b), g(a, b)]$
So $\emptyset=f+g$ is continuous at (a, b).
Similarly we can prove that
$\varnothing=f g$ and $\varnothing=f / g$ are continuous at (a, b).

EXERCISE C-2

Show that the following functions are discontinuous at $(0,0)$,
$(x, y) \neq(0,0)$ and $f(0,0)=0$
(1) $f(x, y)=\frac{x^{3}+y^{3}}{x^{3}-y^{3}}$
(2) $f(x, y)=\frac{x^{2}+x y}{x y+y^{2}}$
(3) $f(x, y)=\frac{x^{2}+x y}{x y+y^{2}}$
(4) $f(x, y)=\frac{x^{2} y^{2}}{x^{3}+y^{6}}$

Discuss the continuity of the following functions at the indicated points.
(5) $f(x, y)=\left\{\begin{array}{ccc}x+y & \text { for } & (x, y) \neq(1,2) \\ x & \text { for } & (x, y)=(1,2)\end{array}\right.$ at $(1,2)$.
(6) $f(x, y)=\left\{\begin{array}{cc}x^{3}+y^{2} & \text { for } \quad(x, y) \neq(2,2) \\ 5 & \text { for }(x, y)=(2,2)\end{array}\right.$ at $(2,2)$.
(7) $f(x, y)=\frac{[(x-2)-(y-1)]^{2}}{(x-2)^{2}+(y-1)^{4}}$ at $(2,1)$

Show that the following functions are discontinuous at the
indicated points.
(8) $f(x, y)=\frac{(x-1)-(y-2)}{(x-1)+(y-2)}$ at $(1,2)$
such that $(x, y) \neq(1,2)$ and $f(1,2)=0$
(9) $f(x, y)=\frac{(x-4)^{2}+(y-5)^{4}}{[(x-4)+(y-5)]^{4}}$ at $(4,5)$
such that $(x, y) \neq(4,5)$ and $f(4,5)=0$
(10) Show that $f(x, y)=\sin x+\cos y$ is continuous at (a, b).
(11) Show that $f(x, y)=\cos x-\sin y$ is continuous at (a, b).

Show that the following functions are continuous at $(0,0)$
where $f(0,0)=0$.
(12) $f(x, y)=|x|+|y|$
(13) $f(x, y)=\frac{x y}{\sqrt{x^{2}+y^{2}}}$
(14) $f(x, y)=x^{2}+x y+y^{2}$

MT. Mreqsiool frir
ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON MATHEMATICS
BY
M. MAQSOOD ALI

FROM WEBSITE
www.mathbunch.com

