

LIMITS

(i) Let f(x,y) be a function of two variables in a domain $D \subset R^2$ and let (a,b) be any limit point of D. We say that "l" is the limit of f(x,y) as x approaches "a" and y approaches "b" or (x,y) approaches (a,b). It can be written as

$$\lim_{\substack{x \to a \\ y \to b}} f(x, y) = l \quad \text{or} \quad \lim_{(x, y) \to (a, b)} f(x, y) = l$$

(ii) For any positive number ε > 0, there exists a δ > 0 such that

$$|f(x,y)-l|<\varepsilon$$

whenever

$$||(x,y) - (a,b)|| < \delta$$

or
 $|x-a| < \delta$ and $|y-b| < \delta$

SIMULTANEOUS LIMIT:

$$\lim_{\substack{x \to a \\ y \to b}} f(x, y) \quad \text{or} \quad \lim_{\substack{(x, y) \to (a, b)}} f(x, y)$$

is called simultaneous limit.

Repeated Limit or Iterated Limits

$$\lim_{x \to a} \lim_{y \to b} f(x, y) = \lim_{x \to a} \{\lim_{y \to b} f(x, y)\}$$

$$\lim_{y \to b} \lim_{x \to a} f(x, y) = \lim_{y \to b} \{\lim_{x \to a} f(x, y)\}$$

are called repeated limits.

The repeated limits

$$\lim_{x \to a} \lim_{y \to b} f(x, y) \text{ and } \lim_{y \to b} \lim_{x \to a} f(x, y)$$

are not necessarily equal.

Although they must be equal if

$$\lim_{(x,y)\to(a,b)}f(x,y)$$

is to exist.

But the equality of repeated limits does not guarantee the existence of simultaneous limit.

Theorem C-1:

lf

$$\lim_{(x,y)\to(a,b)}f(x,y)$$

exist then

$$\lim_{x \to a} \lim_{y \to b} f(x, y) \text{ and } \lim_{y \to b} \lim_{x \to a} f(x, y)$$

must be equal

But

$$\lim_{x \to a} \lim_{y \to b} f(x, y) = \lim_{y \to b} \lim_{x \to a} f(x, y)$$

does not guarantee the existence of

$$\lim_{(x,y)\to(a,b)}f(x,y)$$

NON-EXISTENCE OF LIMIT:

(i) Repeated limit test:

Simultaneous limit

$$\lim_{(x,y)\to(a,b)}f(x,y)$$

does not exist if the repeated limits $\lim_{x \to a} \lim_{y \to b} f(x, y)$ and $\lim_{y \to b} \lim_{x \to a} f(x, y)$ are not equal

that is

$$\lim_{x \to a} \lim_{y \to b} f(x, y) \neq \lim_{y \to b} \lim_{x \to a} f(x, y)$$

(ii) Two path Test:

Suppose that $g_1(x)$ and $g_2(x)$ are two functions such that

$$\lim_{x \to a} g_1(x) = b \text{ and } \lim_{x \to b} g_2(x) = a$$

f(x,y) is a function of two variables. The simultaneous limit

$$\lim_{(x,y)\to(a,b)} f(x,y)$$

does not exist, if

$$\lim_{x \to a} f(x, g_1(x)) \neq \lim_{x \to a} f(x, g_2(x))$$

Two-path test is shown in

figure C-7.

Note: y = g(x) or x = g(y) is a straight line or a curve passes through the point (a, b) when y = g(a) = b or x = g(b) = a respectively.

y=g(x) is a straight line or curve nearly passes through the point (a,b) or approaches to (a,b) when $\lim_{x\to a}g(x)=b.$

$$\lim_{x \to a} f(x, g_1(x)) \neq \lim_{x \to a} f(x, g_2(x))$$

Figure C-7

Similarly x = g(y) approaches to (a, b) when

$$\lim_{x \to b} g(y) = a$$

Path: Any curve or straight line (i.e. y = g(x) or x = g(y)) nearly passes through the point (a, b) or approaches to (a,b) is a path.

Example 1:

Discuss the limit of the following function at (0,0)

$$f(x,y) = \frac{x - y^2}{\sqrt{x^2 + y^4}}$$

Solution:

$$\lim_{x \to 0} \lim_{y \to o} f(x, y) = \lim_{x \to 0} \lim_{y \to 0} \frac{x - y^2}{\sqrt{x^2 + y^4}} = \lim_{x \to 0} \frac{x}{\sqrt{x^2}} = 1$$

$$\lim_{y\to 0} \lim_{x\to 0} f(x,y) = \lim_{y\to 0} \lim_{x\to 0} \frac{x-y^2}{\sqrt{x^2+y^4}} = \lim_{y\to 0} \frac{-y^2}{y^2} = -1$$

$$\lim_{x\to 0} \lim_{y\to 0} f(x,y) \neq \lim_{y\to 0} \lim_{x\to 0} f(x,y).$$
So
$$\lim_{(x,y)\to(0,0)} f(x,y) \text{ does not exist.}$$
Example 2:
Whether simultaneous limit exists or not for the

$$\lim_{x\to 0} \lim_{y\to 0} f(x,y) \neq \lim_{y\to 0} \lim_{x\to 0} f(x,y)$$

Whether simultaneous limit exists or not for the following function at (0,0).

$$f(x,y) = \frac{x+y}{\sqrt{x^2+y^2}}$$

Solution:

$$\lim_{x \to 0} \lim_{y \to 0} f(x, y) = \lim_{y \to 0} \lim_{x \to 0} f(x, y) = 1$$

Now we consider a function y = g(x) = mx, which is a straight line passes through (0, 0)

or

$$\lim_{x \to 0} g(x) = 0$$

$$\lim_{x \to 0} f(x, g(x)) = \lim_{x \to 0} \frac{x + mx}{\sqrt{x^2 + m^2 x^2}}$$

$$= \lim_{x \to 0} \frac{x(1+m)}{x\sqrt{1+m^2}}$$

$$= \frac{1+m}{\sqrt{1+m^2}}$$

it depends on m , so the limits are not same for different values of m.

so $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

Explanation:

Limit of f does not exist if the remaining value depends on m.

Since
$$g(x) = mx$$

We can consider two functions g_1 and g_2 taking two different values of m.

If
$$m = 1 \Rightarrow g_1(x) = x$$

If $m = 100 \Rightarrow g_2(x) = 100x$

$$\lim_{x \to 0} f(x, g_1(x)) = \frac{1+1}{\sqrt{1+1^2}} = \sqrt{2} = 1.4$$

$$\lim_{x \to 0} f(x, g_2(x)) = \frac{1+100}{\sqrt{1+100^2}} = 0.01$$

$$\lim_{x \to 0} f(x_1, g_1(x)) \neq \lim_{x \to 0} f(x, g_2(x))$$
Hence
$$\lim_{(x,y) \to (0,0)} f(x,y) \text{ does not exist,}$$
as shown in

as shown in

figure C-8.

Example 3:

Discuss the limit of the following function f at (3,5)

$$f(x,y) = \frac{(x-3)^2(y-5)^2}{(x-3)^6 + (y-5)^3}$$

Solution:

$$\lim_{(x,y)\to(3,5)} f(x,y) = \lim_{(x,y)\to(3,5)} \frac{(x-3)^2(y-5)^2}{(x-3)^6 + (y-5)^3}$$

Suppose that

$$y-5 = m (x - 3)^{2}$$

$$g(x) = y = m (x - 3)^{2} + 5$$

$$\lim_{x \to 3} g(x) = 5$$

So that,

$$\lim_{x \to 3} f(x, g(x)) = \lim_{x \to 3} \frac{(x-3)^2 \{m(x-3)^2\}^2}{(x-3)^6 + \{m(x-3)^2\}^3}$$

$$= \lim_{x \to 3} \frac{m^2 (x-3)^6}{(x-3)^6 (1+m^3)}$$

$$= \frac{m^2}{1+m^3}$$

It depends on m, so limit of f does not exist at (3,5).

Figure C-8

Explanation:

Suppose that g_1 and g_2 are the two functions for m=1 and m=-9/10 respectively.

$$g_1(x) = (x-3)^2 + 5$$

$$g_2(x) = -\frac{9}{10}(x-3)^2 + 5$$

$$g_2(x) = -\frac{1}{10}(x-3)^2 + 5$$

$$\lim_{x \to 3} f(x, g_1(x)) = 0.5$$

$$\lim_{x \to 3} f(x, g_2(x)) = 2.99$$

$$\lim_{x \to 3} f(x, g_1(x) \neq \lim_{x \to 3} f(x, g_2(x))$$
Hence limit of the function does not exist at (3,5).

$$\lim_{x \to 3} f(x, y_1(x) \neq \lim_{x \to 3} f(x, y_2(x))$$

Example 4:

Discuss $\lim_{(x,y)\to(0,0)} f(x,y)$ for the following functions.

Figure c-9

(i)
$$f(x,y) = \frac{y^3 + 2xy - x^3}{y^3 + x^3}$$

(ii)
$$f(x,y) = x^3 + xy^2$$

Solution: (i)

$$\lim_{x \to 0} \lim_{y \to 0} f(x, y) = \lim_{x \to 0} \lim_{y \to 0} \frac{y^3 + 2xy - x^3}{y^3 + x^3}$$

$$= \lim_{x \to 0} \frac{-x^3}{x^3} = -1$$

$$\lim_{y \to 0} \lim_{x \to 0} f(x, y) = \lim_{y \to 0} \lim_{x \to 0} \frac{y^3 + 2xy - x^3}{y^3 + x^3}$$

$$= \lim_{y \to 0} \frac{y^3}{y^3} = 1$$

 $\lim_{x \to 0} \lim_{y \to 0} f(x, y) \neq \lim_{y \to 0} \lim_{x \to 0} f(x, y)$ Since

Hence $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

(ii)
$$f(x,y) = x^3 + xy^2$$

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} (x^3 + xy^2) = 0$$

Figure C-9

Difference between Two-path Test and Repeated Limit:

Repeated limit is a particular case of two-path test because for repeated limit we discuss the limit of f(x,y) along only two different paths $y\cong b$ and $x\cong a$ when $y\cong b$ is a straight line parallel to x-axis and $x\cong a$ is another straight line parallel to y-axis , as shown in **figure C-10.**

{Note : $x \cong a \ mean \ x = a^+ or \ x = a^-}$

Figure C-10

AUTHOR
M.
MAQSOOD
ALI
ASSISTANT
PROFESSOR OF
MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON
MATHEMATICS
BY
M. MAQSOOD ALI
FROM WEBSITE
www.mathbunch.com

Existence of limit:

(i) Let z = f(x, y), where f is a function of two variables. The limit of f at the point (a, b) exists if the limit is same along every approach path as shown in the

figure C-11.

 $g_i(x)$ and $g_j(x)$ are any two paths through the deleted neighborhood of (a,b).

The limit of f exist when

$$\lim_{x \to a} f(x, g_i(x)) = \lim_{x \to a} f(x, g_j(x))$$

$$i \neq j$$
 , $i = 1,2,3,...,n$
 $j = 1,2,3,...,n$

Figure C-11

(ii) The limit of f exist, when

$$|f(x,y)-l|<\varepsilon$$

such that

$$|x-a| < \delta$$
 , $|y,-b| < \delta$

Figure C-12

Figure C-12

Difference between the limit of one variable function and two variables function:

Let y = f(x), where f is a function of one variable x. To discuss the limit of f at x = a, we find the limit for two values a^- and a^+ lies in an open interval about a. The limits are called left hand limit and right hand limit respectively.

The
$$\lim_{x \to a} f(x)$$
 exist if
$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$$

Let z=f(x,y), where f is a function of two variables. To discuss the limit of f at (a,b), there are a lot of points lie in the open disk about (a,b) these points lie on the different curves or straight lines passes through the open disk as shown in the **figure C-14**. The limit exists only when all the limits are equal.

Figure C-14

AUTHOR
M.
MAQSOOD
ALI
ASSISTANT
PROFESSOR OF
MATHEMATICS

FREE DOWNLOAD
ALL BOOKS AND CD ON
MATHEMATICS

BY

M. MAQSOOD ALI

FROM WEBSITE

www.mathbunch.com

EXERCISE C-1

Find the limit of the following functions at the indicated point:

(1)
$$f(x,y) = \frac{x^3 - y^3}{x - y}$$
 at (1,1)
(2) $f(x,y) = \frac{xy}{x^2 - xy}$ at (0,3)

(2)
$$f(x,y) = \frac{xy}{x^2 - xy}$$
 at (0,3)

(3)
$$f(x,y) = \frac{x^2 - 2xy + y^2}{x - y0}$$
 at (2,2)

(4)
$$f(x,y) = \frac{x+y}{x-y}$$
 at (3,2)

Show that the simultaneous limit does not exist at (0,0) for the following functions:

(5)
$$f(x,y) = \frac{x^2y^2}{x^6 + y^3}$$
 (6) $f(x,y) = \frac{x^2}{x^3}$

(5)
$$f(x,y) = \frac{x^2 y^2}{x^6 + y^3}$$
 (6) $f(x,y) = \frac{x^2 y^2}{x^3 + y^6}$ (7) $f(x,y) = \frac{x^3 - y^3}{x^3 + y^3}$ (8) $f(x,y) = \frac{x^2 + xy}{xy + y^2}$

Discuss the limit of the following functions at the indicated point.

(9)
$$f(x,y) = \frac{(x-2)(y-1)}{(x-2)^2 + (y-1)^2}$$
 at (2,1)

(10)
$$f(x,y) = \frac{(x-a)^2 + (y-b)}{\sqrt{(x-a)^4 + (y-b)^2}}$$
 at (a,b)

(9)
$$f(x,y) = \frac{(x-2)(y-1)}{(x-2)^2 + (y-1)^2}$$
 at $(2,1)$
(10) $f(x,y) = \frac{(x-a)^2 + (y-b)}{\sqrt{(x-a)^4 + (y-b)^2}}$ at (a,b)
(11) $f(x,y) = \frac{(x-1) + (y-2)^2}{\sqrt{(x-1)^2 + (y-2)^2}}$ at $(1,2)$
(12) $f(x,y) = \frac{x(y-1)}{x^2 + (y-2)^2}$ at $(0,1)$
(13) $f(x,y) = \frac{(x-a)^2y^2}{\sqrt{(x-a)^6 + y^{12}}}$ at $(a,0)$

(12)
$$f(x,y) = \frac{x(y-1)}{x^2 + (y-2)^2}$$
 at (0,1)

(13)
$$f(x,y) = \frac{(x-a)^2 y^2}{\sqrt{(x-a)^6 + y^{12}}}$$
 at $(a,0)$

Discuss the limit of the following functions along the given path at the indicated point.

(14)
$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$
 at (0,0)

along the paths

- (i) y = x
- (ii) x = my
- (iii) y = 3x
- (iv) x = 5y

(15)
$$f(x,y) = \frac{x^3 + y}{\sqrt{x^6 + y^2}}$$
 at (0,0)

along the paths

- (i) $y = 2x^3$
- (ii) $x = 3y^{1/3}$
- (iii) $y = 3x^3$
- (iv) $x = my^{1/3}$

(16)
$$f(x,y) = \frac{(x-2)^2 + (y-3)}{\sqrt{(x-2)^4 + (y-3)^2}}$$
 at (2,3)

along the paths

- (i) $y-3=(x-2)^2$
- (ii) $y-3=m(x-2)^2$
- (iii) $x 2 = m(y 3)^{1/2}$

AUTHOR

M. MAQSOOD ALI

ASSISTANT PROFESSOR OF MATHEMATICS

FREE DOWNLOAD

ALL BOOKS AND CD ON MATHEMATICS

BY

M. MAQSOOD ALL FROM WEBSITE

www.mathbunch.com

