

LIMITS

(i) Let $f(x, y)$ be a function of two variables in a domain $\mathrm{D} \subset R^{2}$ and let (a, b) be any limit point of D . We say that " l " is the limit of $f(x, y)$ as x approaches " a " and y approaches " b " or (x, y) approaches (a, b).
It can be written as

$$
\lim _{\substack{x \rightarrow b \\ y \rightarrow b}} f(x, y)=l \quad \text { or } \quad \lim _{(x, y) \rightarrow(a, b)} f(x, y)=l
$$

(ii) For any positive number $\varepsilon>0$, there exists a $\delta>0$ such that

$$
|f(x, y)-l|<\varepsilon
$$

whenever

$$
\begin{gathered}
||(x, y)-(a . b)||<\delta \\
\text { or } \\
|x-a|<\delta \text { and }|y-b|<\delta
\end{gathered}
$$

SIMULTANEOUS LIMIT:

$$
\lim _{\substack{x \rightarrow a \\ y \rightarrow b}} f(x, y) \text { or } \lim _{(x, y) \rightarrow(a, b)} f(x, y)
$$

is called simultaneous limit.
Repeated Limit or Iterated timits:

$$
\begin{gathered}
\lim _{x \rightarrow a} \lim _{y \rightarrow b} f(x, y)=\lim _{x \rightarrow a}\left\{\lim _{y \rightarrow b} f(x, y)\right\} \\
\text { and } \\
\lim _{y \rightarrow b} \lim _{x \rightarrow a} f(x, y)=\lim _{y \rightarrow b}\left\{\lim _{x \rightarrow a} f(x, y)\right\}
\end{gathered}
$$

are called repeated limits.
The repeated limits
$\lim _{x \rightarrow a \rightarrow b} \lim _{y \rightarrow b} f(x, y)$ and $\lim _{y \rightarrow b} \lim _{x \rightarrow a} f(x, y)$
are not necessarily equal.
Although they must be equal if

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)
$$

is to exist.
But the equality of repeated limits does not guarantee the existence of simultaneous limit.

Theorem C-1:
If

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)
$$

exist then

$$
\lim _{x \rightarrow a} \lim _{y \rightarrow b} f(x, y) \text { and } \lim _{y \rightarrow b} \lim _{x \rightarrow a} f(x, y)
$$

must be equal
But

$$
\lim _{x \rightarrow a} \lim _{y \rightarrow b} f(x, y)=\lim _{y \rightarrow b} \lim _{x \rightarrow a} f(x, y)
$$

does not guarantee the existence of

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)
$$

NON-EXISTENCE OF LIMIT:
(i) Repeated limit test:

Simultaneous limit

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)
$$

does not exist if the repeated limits
$\lim _{x \rightarrow a} \lim _{y \rightarrow b} f(x, y)$ and $\lim _{y \rightarrow b} \lim _{x \rightarrow a} f(x, y)$ are not equal
that is

$$
\lim _{x \rightarrow a} \lim _{y \rightarrow b} f(x, y) \neq \lim _{y \rightarrow b} \lim _{x \rightarrow a} f(x, y)
$$

(ii) Two path Test:

Suppose that $g_{1}(x)$ and $g_{2}(x)$ are two functions such that $\lim _{x \rightarrow a} g_{1}(x)=b$ and $\lim _{x \rightarrow b} g_{2}(x)=a$
$f(x, y)$ is a function of two variables. The simultaneous limit

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)
$$

does not exist , if

$$
\lim _{x \rightarrow a} f\left(x, g_{1}(x)\right) \neq \lim _{x \rightarrow a} f\left(x, g_{2}(x)\right)
$$

Two-path test is shown in
figure C-7.
Note: $y=g(x)$ or $x=g(y)$ is a straight line or a curve passes through the point (a, b) when $y=g(a)=b$ or $x=g(b)=a$ respectively.
$y=g(x)$ is a straight line or curve nearly passes
through the point (a, b) or approaches to (a, b) when

$$
\lim _{x \rightarrow a} g(x)=b
$$

Similarly $x=g(y)$ approaches to (a, b) when

$$
\lim _{x \rightarrow b} g(y)=a
$$

Path: Any curve or straight line (i.e. $y=g(x)$ or $x=g(y)\}$
nearly passes through the point (a, b) or approaches to
(a, b) is a path.

Example 1:

Discuss the limit of the following function at $(0,0)$

$$
f(x, y)=\frac{x-y^{2}}{\sqrt{x^{2}+y^{4}}}
$$

Solution:

$\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y)=\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} \frac{x-y^{2}}{\sqrt{x^{2}+y^{4}}}=\lim _{x \rightarrow 0} \frac{x}{\sqrt{x^{2}}}=1$
$\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y)=\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} \frac{x-y^{2}}{\sqrt{x^{2}+y^{4}}}=\lim _{y \rightarrow 0} \frac{-y^{2}}{y^{2}}=$
$\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y) \neq \lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y)$.
So $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.

Example 2 :

Whether simultaneous limit exists or not for the
following function at $(0,0)$.

$$
f(x, y)=\frac{x+y}{\sqrt{x^{2}+y^{2}}}
$$

Solution:

$$
\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y)=\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y)=1
$$

Now we consider a function $y=g(x)=m x$, which is a straight line passes through $(0,0)$
or

$$
\begin{gathered}
\lim _{x \rightarrow 0} g(x)=0 \\
\lim _{x \rightarrow 0} f(x, g(x))=\lim _{x \rightarrow 0} \frac{x+m x}{\sqrt{x^{2}+m^{2} x^{2}}} \\
=\lim _{x \rightarrow 0} \frac{x(1+m)}{x \sqrt{1+m^{2}}} \\
=\frac{1+m}{\sqrt{1+m^{2}}}
\end{gathered}
$$

it depends on m, so the limits are not same for different values of m.
so $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.

Explanation:

Limit of f does not exist if the remaining value depends on m.
Since $g(x)=m x$
We can consider two functions g_{1} and g_{2} taking two different values of m.
If $m=1 \quad \Rightarrow \quad g_{1}(x)=x$
If $m=100 \Rightarrow g_{2}(x)=100 x$

$$
\begin{gathered}
\lim _{x \rightarrow 0} f\left(x, g_{1}(x)\right)=\frac{1+1}{\sqrt{1+1^{2}}}=\sqrt{2}=1.4 \\
\lim _{x \rightarrow 0} f\left(x, g_{2}(x)\right)=\frac{1+100}{\sqrt{1+100^{2}}}=0.01 \\
\lim _{x \rightarrow 0} f\left(x_{1}, g_{1}(x)\right) \neq \lim _{x \rightarrow 0} f\left(x, g_{2}(x)\right)
\end{gathered}
$$

Hence $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist,
as shown in

figure C-8.

Example 3:

Discuss the limit of the following function f at $(3,5)$

$$
f(x, y)=\frac{(x-3)^{2}(y-5)^{2}}{(x-3)^{6}+(y-5)^{3}}
$$

Solution:

$$
\lim _{(x, y) \rightarrow(3,5)} f(x, y)=\lim _{(x, y) \rightarrow(3,5)} \frac{(x-3)^{2}(y-5)^{2}}{(x-3)^{6}+(y-5)^{3}}
$$

Suppose that

$$
\begin{gathered}
y-5=m(x-3)^{2} \\
g(x)=y=m(x-3)^{2}+5 \\
\lim _{x \rightarrow 3} g(x)=5
\end{gathered}
$$

So that,

$$
\begin{aligned}
& \begin{aligned}
\lim _{x \rightarrow 3} f(x, g(x)) & =\lim _{x \rightarrow 3} \frac{(x-3)^{2}\left\{m(x-3)^{2}\right\}^{2}}{(x-3)^{6}+\left\{m(x-3)^{2}\right\}^{3}} \\
& =\lim _{x \rightarrow 3} \frac{m^{2}(x-3)^{6}}{(x-3)^{6}\left(1+m^{3}\right)} \\
& =\frac{m^{2}}{1+m^{3}}
\end{aligned} \\
& \text { It depends on } m, \text { so limit of } f \text { does not exist at }(3,5) .
\end{aligned}
$$

Explanation:

Suppose that g_{1} and g_{2} are the two functions for $m=1$ and $m=-9 / 10$ respectively.
$g_{1}(x)=(x-3)^{2}+5$
$g_{2}(x)=-\frac{9}{10}(x-3)^{2}+5$

$$
\begin{gathered}
\lim _{x \rightarrow 3} f\left(x, g_{1}(x)\right)=0.5 \\
\lim _{x \rightarrow 3} f\left(x, g_{2}(x)\right)=2.99 \\
\lim _{x \rightarrow 3} f\left(x, g_{1}(x) \neq \lim _{x \rightarrow 3} f\left(x, g_{2}(x)\right)\right.
\end{gathered}
$$

Hence limit of the function does not exist at $(3,5)$.

Figure c-9

Example 4:

Discuss $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ for the following functions.
(i) $f(x, y)=\frac{y^{3}+2 x y-x^{3}}{y^{3}+x^{3}}$
(ii) $f(x, y)=x^{3}+x y^{2}$

Solution: (i)

$$
\begin{aligned}
\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y) & =\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} \frac{y^{3}+2 x y-x^{3}}{y^{3}+x^{3}} \\
& =\lim _{x \rightarrow 0} \frac{-x^{3}}{x^{3}}=-1 \\
\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y) & =\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} \frac{y^{3}+2 x y-x^{3}}{y^{3}+x^{3}} \\
& =\lim _{y \rightarrow 0} \frac{y^{3}}{y^{3}}=1
\end{aligned}
$$

Since $\quad \lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y) \neq \lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y)$
Hence $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.
(ii) $\quad f(x, y)=x^{3}+x y^{2}$

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{(x, y) \rightarrow(0,0)}\left(x^{3}+x y^{2}\right)=0
$$

Difference between Two-path Test and Repeated Limit:

Repeated limit is a particular case of two-path test because for repeated limit we discuss the limit of $f(x, y)$ along only two different paths $y \cong b$ and $x \cong a$ when $y \cong b$ is a straight line parallel to x-axis and $x \cong a$ is another straight line parallel to y-axis, as shown in figure C-10.
$\left\{\right.$ Note : $x \cong$ a mean $x=a^{+}$or $\left.x=a^{-}\right\}$

Figure C-10

FREE DOWNLOAD

AUL BOOKS AND CD ON MATHEMATICS
BY
M. MAQSOOD ALI

FROM WEBSITE
www.mathbunch .com

Existence of limit:

(i) Let $z=f(x, y)$, where f is a function of two variables. The limit of f at the point (a, b) exists if the limit is same along every approach path as shown in the
figure C-11.
$g_{i}(x)$ and $g_{j}(x)$ are any two paths through the deleted neighborhood of (a, b).
The limit of f exist when

$$
\begin{gathered}
\operatorname{Lim}_{x \rightarrow a} f\left(x, g_{i}(x)\right)=\operatorname{Lim}_{x \rightarrow a} f\left(x, g_{j}(x)\right) \\
i \neq j \\
\\
\quad, \quad i=1,2,3, \ldots, n \\
j=1,2,3, \ldots, n
\end{gathered}
$$

Figure C-11
(ii) The limit of f exist, when

$$
|f(x, y)-l|<\varepsilon
$$

such that

$$
|x-a|<\delta \quad, \quad|y,-b|<\delta
$$

Figure C-12

Figure C-12

Difference between the limit of one variable

 function and two variables function:Let $y=f(x)$, where f is a function of one variable x. To discuss the limit of f at $x=a$, we find the limit for two values a^{-}and a^{+}lies in an open interval about a. The limits are called left hand limit and right hand limit respectively.

$$
\begin{aligned}
& \text { The } \lim _{x \rightarrow a} f(x) \text { exist if } \\
& \qquad \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)
\end{aligned}
$$

Let $z=f(x, y)$, where f is a function of two variables. To discuss the limit of $f a t(a, b)$, there are a lot of points lie in the open disk about (a, b) these points lie on the different curves or straight lines passes through the open disk as shown in the figure C-14. The limit exists only when all the limits are equal.

Figure C-14

FREE DOWNLOAD
ALL BOOKS AND CD ON MATHEMATICS
BY
M. MAQSOOD ALI

FROM WEBSITE
www.mathbunch.com

EXERCISE C-1

Find the limit of the following functions at the indicated point:
(1) $f(x, y)=\frac{x^{3}-y^{3}}{x-y}$
(2) $f(x, y)=\frac{x y}{x^{2}-x y}$
(3) $f(x, y)=\frac{x^{2}-2 x y+y^{2}}{x-y 0}$ at $\quad(2,2)$
(4) $f(x, y)=\frac{x+y}{x-y}$
at

Show that the simultaneous limit does not exist at $(0,0)$ for the following functions;
(5) $f(x, y)=\frac{x^{2} y^{2}}{x^{6}+y^{3}}$
(6) $f(x, y)=\frac{x^{2} y^{2}}{x^{3}+y^{6}}$
(7) $f(x, y)=\frac{x^{3}-y^{3}}{x^{3}+y^{3}}$
(8) $f(x, y)=\frac{x^{2}+x y}{x y+y^{2}}$

Discuss the limit of the following functions at the indicated point.
(9) $f(x, y)=\frac{(x-2)(y-1)}{(x-2)^{2}+(y-1)^{2}}$
(10) $f(x, y)=\frac{(x-a)^{2}+(y-b)}{\sqrt{(x-a)^{4}+(y-b)^{2}}}$ at (a, b)
(11) $f(x, y)=\frac{(x-1)+(y-2)^{2}}{\sqrt{(x-1)^{2}+(y-2)^{2}}}$ at (1,2)
(12) $f(x, y)=\frac{x(y-1)}{x^{2}+(y-2)^{2}} \quad$ at $(0,1)$
(13) $f(\mathrm{x}, \mathrm{y})=\frac{(x-a)^{2} \mathrm{y}^{2}}{\sqrt{(x-a)^{6}+\mathrm{y}^{12}}}$
at $(a, 0)$

Discuss the limit of the following functions

along the given path at the indicated point.
(14) $f(x, y)=\frac{\mathrm{x}^{2}-\mathrm{y}^{2}}{\mathrm{x}^{2}+\mathrm{y}^{2}}$ at $(0,0)$
along the paths
(i) $y=x$
(ii) $\boldsymbol{x}=\boldsymbol{m} \boldsymbol{y}$
(iii) $y=3 x$
(iv) $\boldsymbol{x}=\mathbf{5} \boldsymbol{y}$
(15) $f(x, y)=\frac{x^{3}+y}{\sqrt{x^{6}+y^{2}}}$
along the paths
(i) $y=2 x^{3}$
(ii) $\quad x=3 y^{1 \backslash 3}$
(iii) $y=3 x^{3}$
(iv) $\quad x=m y^{1 \backslash 3}$
(16) $f(x, y)=\frac{(x-2)^{2}+(y-3)}{\sqrt{(x-2)^{4}+(y-3)^{2}}}$ at $(2,3)$
along the paths
(i) $y-3=(x-2)^{2}$
(ii) $y-3=m(x-2)^{2}$
(iii) $x-2=m(y-3)^{1 \backslash 2}$

MIT MrAQSOOD ATI
ASSISTANT PROFESSOR OF MATHEMATICS

ALL BOOKS AND CD ON MATHEMAHES
BY
M. MAQSOODALI

FROM WEBSITE
www.mathbunch.com

